人工智能
文章平均质量分 72
人工智能
逆羽飘扬
在路上ing
展开
-
卷积神经网络小结
毕设老师给我们讲了许多人工智能相关的知识,发现网上学的东西确实存在局限,没有办法对误区进行交流。写一下体会:卷积神经网络的训练是拟合和逼近一个复杂函数的过程,这个复杂函数就是输入-规则-输出中的规则卷积核定义:图像处理时,在给定输入图像中一个小区域中像素加权平均后成为输出图像中的对应像素,进行权值定义的函数特点:DNN深度神经网络和CNN卷积神经网络卷积核类似组成例如:一个(3,3,64,32)的卷积核意思是:卷积核高度、卷积核宽度、输入通道数、输出通道数具体意思是:32个64通道数原创 2021-04-25 15:58:50 · 535 阅读 · 1 评论 -
震惊,贝叶斯算法实现学生成绩预测,哈哈哈
QAU python大作业,学生成绩预测,用贝叶斯算法实现的。coveright:love_R.Y from CS1704#查看当前路径!ls /home/aistudio/DataSets/TestData.csv TrainData.csv第一步导入用到的库文件import csvfrom pandas.core.frame import DataFrameimport pandas as pd第二步建立链表的数据结构参考博客python一切皆函数#定原创 2020-05-26 16:27:02 · 2349 阅读 · 0 评论 -
百度飞桨PaddlePaddle---调参思路
前言这是老师给的一位学长的一次调参经历,实现的是图像识别中的物品分类。采用的是VGG模型。一开始的我毫无头绪,看完这个调参思路,把每个参数弄清楚,至少可以进行调参的测试了,寻找最优参数,需要更多的努力,共勉!!!!调参思路• 第一次执行,迭代次数为300,同时将图像大小剪裁为50x50。这样训练出来的误差很小,达到了90%多,但测试误差极大,准确率仅为50%。我考虑这是由于图像区域过小,导致模型过分关注图像细节而过拟合造成的。• 第二次执行,将图像放大,剪裁大小修改为150,在300次迭代过程原创 2020-05-14 22:43:40 · 1644 阅读 · 0 评论 -
PaddlePaddle卷积神经网络
神经网络的问题如何解决需要输入层过多,导致计算机性能不足,无法实现问题?卷积的平移不变模式:遍历整个图片,只是提取所需要的局部特征池化中下采样被检测物体的不变模式神经网络逐层累加的过程中可以直接对图像进行缩放多层的神经网络可以实现更加复杂的模式识别,这是浅层神经网络的不足之处CNN基本结构CNN应用图像模式的一般框架输入层+卷积层+激活函数+池化层+全连接层...原创 2020-04-22 22:24:16 · 814 阅读 · 0 评论 -
paddlepaddle深度学习参数的优化
learn_rate学习率,通常位于优化步骤中表示每次结果误差的反馈系数,越大结果反馈误差对模型影响越大,一般取3、1、0.5、0.1、0.01、0.0001···对于深度学习来说,每 t 轮学习,学习率减半。对于监督学习来说,初始设置一个较大的学习率,然后随着迭代次数的增加,减小学习率。大多数的网络的学习率的初始值设置为0.01和0.001为宜感知器个数(隐藏层数)层数越多,时...原创 2020-04-02 10:59:32 · 1222 阅读 · 0 评论