f[i][j]表示由s1的前i个字母,和s2前j个字母构成的最长公共子序列长度
1.s1[i]==s1[j]时,表示此时s1的前i-1个字母与s2前j-1个字母构成的最长公共子序列+1
f[i][j]=f[i-1][j-1]+1
2.s1[i]!=s2[j]时,那么取s1前i-1个字母与s2前j个字母中构成的最长公共子序列与s1前i个字母与s2前j-1个字母中构成的最长公共子序列中的max
f[i][j]=max(f[i-1][j],f[i][j-1])
看这个视频最长公共子序列 - 动态规划 Longest Common Subsequence - Dynamic Programming
可以帮助你更好的了解这个过程
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
const int N=1e3+10;
int tmp[N][N];
int main(){
int l1,l2;
char s1[N],s2[N];
scanf("%d%d",&l1,&l2);
cin>>s1+1>>s2+1;
for(int i=1;i<=l1;i++)
for(int j=1;j<=l2;j++)
if(s1[i]==s2[j]) tmp[i][j]=tmp[i-1][j-1]+1;
else tmp[i][j]=max(tmp[i-1][j],tmp[i][j-1]);
printf("%d\n",tmp[l1][l2]);
return 0;
}
(要求最长公共字符串LPS时,根据连续性改变状态,即不会继承序列长度,改变转移方程即可)
if(s1[i]==s2[j])
tmp[i+1][j+1]=tmp[i][j]+1;
else
tmp[i+1][j+1]=0;
洛谷P1439 ,也是一道LCS模板题,思路是将LCS转化为LIS NlogN求解
LIS求解可以看这里