最长公共子序列

f[i][j]表示由s1的前i个字母,和s2前j个字母构成的最长公共子序列长度

1.s1[i]==s1[j]时,表示此时s1的前i-1个字母与s2前j-1个字母构成的最长公共子序列+1
f[i][j]=f[i-1][j-1]+1



2.s1[i]!=s2[j]时,那么取s1前i-1个字母与s2前j个字母中构成的最长公共子序列与s1前i个字母与s2前j-1个字母中构成的最长公共子序列中的max

f[i][j]=max(f[i-1][j],f[i][j-1])

看这个视频最长公共子序列 - 动态规划 Longest Common Subsequence - Dynamic Programming 

可以帮助你更好的了解这个过程 



f​​​​​​模板题

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
const int N=1e3+10;
int tmp[N][N];
int main(){
    int l1,l2;
    char s1[N],s2[N];
    scanf("%d%d",&l1,&l2);
    cin>>s1+1>>s2+1;
    for(int i=1;i<=l1;i++)
        for(int j=1;j<=l2;j++)
            if(s1[i]==s2[j]) tmp[i][j]=tmp[i-1][j-1]+1;
            else tmp[i][j]=max(tmp[i-1][j],tmp[i][j-1]);
    printf("%d\n",tmp[l1][l2]);
    return 0;
}

(要求最长公共字符串LPS时,根据连续性改变状态,即不会继承序列长度,改变转移方程即可)

if(s1[i]==s2[j])
    tmp[i+1][j+1]=tmp[i][j]+1;
else
    tmp[i+1][j+1]=0; 

洛谷P1439 ,也是一道LCS模板题,思路是将LCS转化为LIS  NlogN求解

LIS求解可以看这里

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chp的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值