动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。
A吃B, B吃C,C吃A。
现有N个动物,以1-N编号。
每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是”1 X Y”,表示X和Y是同类。
第二种说法是”2 X Y”,表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。
当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N和K句话,输出假话的总数。
输入格式
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
输出格式
只有一个整数,表示假话的数目。
数据范围
1≤N≤50000,
0≤K≤100000
输入样例:
100 7
1 101 1
2 1 2
2 2 3
2 3 3
1 1 3
2 3 1
1 5 5
输出样例:
3
这道题是运用并查集算法的经典好题,脱了好久,今天补上题解…
分析这道题,有三种关系A吃B,B吃C,C吃A,用并查集来解这道题的思路就是保存这三者之间关系,当有不满足之前得出结果的关系时,那么这条关系是错误的。
如何来保存三者之间的关系呢?在同一集合中,我们可以通过每个点到根节点的距离来判断关系,
比如两个点a,b在同一集合中如果
(
a
−
b
)
%
3
=
=
0
(a-b)\%3==0
(a−b)%3==0那么a和b就是同类,
为什么不用
a
%
3
=
=
b
%
3
a\%3==b\%3
a%3==b%3?
因为存储的距离在运算中可能为负数。
同理,
(
a
−
b
−
1
)
%
3
=
=
0
(a-b-1)\%3==0
(a−b−1)%3==0,说明a吃b。
有了这些思路,我们就可以用代码来实现了。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=5e4+10;
int p[N];
int d[N];
int n,k;
int res=0;
void init()
{
for(int i=1;i<=n;i++) p[i]=i;
}
int find(int x)//路径压缩
{
if(x!=p[x])
{
int t=find(p[x]);//保存好p[x],以免直接将p[x]变为根节点
d[x]+=d[p[x]];
p[x]=t;
}
return p[x];
}
int main()
{
scanf("%d%d",&n,&k);
init();
while(k--)
{
int x,a,b;
scanf("%d%d%d",&x,&a,&b);
if(a>n||b>n) res++;
else
{
int fa=find(a),fb=find(b);
if(x==1)
{
if(fa==fb&&(d[a]-d[b])%3!=0) res++;//判断在同一集合时,判断其关系是否满足
else if(fa!=fb) //不在同一集合时,直接加入即可,处理好距离
{
p[fa]=fb;
d[fa]=d[b]-d[a];
}
}
else{
if(fa==fb&&(d[a]-d[b]-1)%3!=0) res++;
else if(fa!=fb)
{
p[fa]=fb;
d[fa]=d[b]-d[a]+1;
}
}
}
}
printf("%d\n",res);
return 0;
}