食物链(并查集)

食物链

动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。

A吃B, B吃C,C吃A。

现有N个动物,以1-N编号。

每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。

有人用两种说法对这N个动物所构成的食物链关系进行描述:

第一种说法是”1 X Y”,表示X和Y是同类。

第二种说法是”2 X Y”,表示X吃Y。

此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。

当一句话满足下列三条之一时,这句话就是假话,否则就是真话。

1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。

你的任务是根据给定的N和K句话,输出假话的总数。

输入格式
第一行是两个整数N和K,以一个空格分隔。

以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。

若D=1,则表示X和Y是同类。

若D=2,则表示X吃Y。

输出格式
只有一个整数,表示假话的数目。

数据范围
1≤N≤50000,
0≤K≤100000
输入样例:
100 7
1 101 1 
2 1 2
2 2 3 
2 3 3 
1 1 3 
2 3 1 
1 5 5
输出样例:
3

这道题是运用并查集算法的经典好题,脱了好久,今天补上题解…

分析这道题,有三种关系A吃B,B吃C,C吃A,用并查集来解这道题的思路就是保存这三者之间关系,当有不满足之前得出结果的关系时,那么这条关系是错误的。
如何来保存三者之间的关系呢?在同一集合中,我们可以通过每个点到根节点的距离来判断关系,
在这里插入图片描述

比如两个点a,b在同一集合中如果 ( a − b ) % 3 = = 0 (a-b)\%3==0 ab%3==0那么a和b就是同类,
为什么不用 a % 3 = = b % 3 a\%3==b\%3 a%3==b%3?
因为存储的距离在运算中可能为负数。
同理, ( a − b − 1 ) % 3 = = 0 (a-b-1)\%3==0 (ab1)%3==0,说明a吃b。
有了这些思路,我们就可以用代码来实现了。

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=5e4+10;
int p[N];
int d[N];
int n,k;
int res=0;
void init()
{
    for(int i=1;i<=n;i++) p[i]=i;
}
int find(int x)//路径压缩
{
    if(x!=p[x])
    {
        int t=find(p[x]);//保存好p[x],以免直接将p[x]变为根节点
        d[x]+=d[p[x]];
        p[x]=t;
    }
    return p[x];
}
int main()
{
    scanf("%d%d",&n,&k);
    init();
    while(k--)
    {
        int x,a,b;
        scanf("%d%d%d",&x,&a,&b);
        if(a>n||b>n) res++;
        else 
        {
            int fa=find(a),fb=find(b);
            if(x==1) 
            {
                if(fa==fb&&(d[a]-d[b])%3!=0) res++;//判断在同一集合时,判断其关系是否满足
                else if(fa!=fb) //不在同一集合时,直接加入即可,处理好距离
                {
                    p[fa]=fb;
                    d[fa]=d[b]-d[a];
                }
            }
            else{
                if(fa==fb&&(d[a]-d[b]-1)%3!=0) res++;
                else if(fa!=fb)
                {
                    p[fa]=fb;
                    d[fa]=d[b]-d[a]+1;
                }
            }
        }
    }
    printf("%d\n",res);
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chp的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值