DGL
文章平均质量分 71
DGL学习笔记
Coisíní℘
要想毕业,先发论文(ಡωಡ)
展开
-
Game-On论文阅读
社交媒体在当今时代有着越来越大的影响力。在这些平台上传播的假新闻对我们的生活产生了破坏性和破坏性的影响。此外,由于多媒体内容比文本数据更能提高帖子的可见性,因此已经观察到多媒体经常被用于创建虚假内容。大量以前的多模态工作试图解决在识别虚假内容时对异构模态进行建模的问题。然而,这些工作有以下局限性:(1)在模型的后期阶段,通过在模态上使用简单的连接运算符来对模态间关系进行低效编码,这可能导致信息丢失;(2)在小而复杂的现实生活中的多模态数据集上训练具有非常深的神经网络,且它具有不成比例数量的参数,这导致。原创 2023-12-05 19:46:04 · 261 阅读 · 4 评论 -
使用DGL实现GAT(并在6个节点的2分类图中进行简单应用)
【代码】使用DGL实现GAT(并在6个节点的2分类图中进行简单应用)原创 2023-12-05 19:22:06 · 537 阅读 · 0 评论 -
DGL的图数据处理管道
编写完以上代码后,就可以使用下面的方式使用定义的import dgl# 数据导入# 创建 dataloaders# 训练# 用户自己的训练代码pass下面中使用的子类# 导入数据# 获取划分的掩码# 获取节点特征# 获取标签# 导入数据# 获取训练集掩码# 获取训练集中的边类型。原创 2023-11-25 14:37:22 · 163 阅读 · 0 评论 -
DGL在异构图上的GraphConv模块
forward() 函数的输出结果也是一个。原创 2023-11-24 23:37:44 · 692 阅读 · 0 评论 -
DGL中NN模块的构造函数
【代码】DGL中NN模块的构造函数。原创 2023-11-23 23:22:51 · 137 阅读 · 0 评论 -
DGL在异构图上进行消息传递
异构图是包含不同类型的节点和边的图。不同类型的节点和边常常具有不同类型的属性。这些属性旨在刻画每一种节点和边的特征。在使用图神经网络时,根据其复杂性, 可能需要使用不同维度的表示来对不同类型的节点和边进行建模。还接受一个字符串来表示跨类型整合函数,来指定。这个字典的每一个键值对里,原创 2023-11-21 15:31:28 · 137 阅读 · 0 评论 -
编写高效的消息传递代码-对消息进行降维
除此之外,考虑到某些图边的数量远远大于节点的数量,DGL建议避免不必要的从点到边的内存拷贝。对于某些情况,比如 GATConv,计算必须在边上保存消息, 那么用户就需要调用基于内置函数的。建议的实现是将线性操作分成两部分,一个应用于 源 节点特征,另一个应用于 目标 节点特征。在最后一个阶段,在边上将以上两部分线性操作的结果相加,即执行。该做法执行以下操作:拼接 源 节点和 目标 节点特征, 然后应用一个线性层,即。有时边上的消息可能是高维的,这会非常消耗内存。, 从内存角度来说是高效的。原创 2023-11-20 21:12:52 · 452 阅读 · 0 评论 -
内置函数和消息传递API
DGL消息传递~~~原创 2023-11-20 18:27:15 · 241 阅读 · 0 评论 -
DGL创建异构图
DGL创建异构图原创 2023-11-20 15:20:44 · 344 阅读 · 0 评论 -
DGL如何表征一张图
DGL 将有向图表示为一个 DGL 图对象。图中的节点编号连续,从0开始。我们一般通过指定图中的节点数,以及源节点和目标节点的列表,来构建这么一个图。下面的代码构造了一个图,这个图有五个叶子节点。中心节点的 ID 为 0,边从中心节点出发,指向众多的叶子节点。在这个图中,边具有从0开始且连续的ID。并且在创建的过程中,。换句话说,我们在创建 g 的时候,并不需要特地指定边,而是直接通过起始点列表,也就是 [0, 0, 0, 0, 0] 和 目标点列表 [1, 2, 3, 4, 5] 来自动生成边。原创 2023-11-14 13:40:37 · 201 阅读 · 0 评论 -
使用dgl库实现GCN【官方案例】
DGL官网案例——GCN原创 2023-11-14 01:03:36 · 533 阅读 · 0 评论