[数据结构笔记][含图解] 算法效率层级 大O记号 速度直观图

本文探讨了算法效率的重要性,重点介绍了大O记号,包括O(1)、O(logc(n))、O(nc)和O(2n)四个级别。大O记号用于表示算法的增长趋势,常数项和低次项在表示效率时可忽略。O(1)代表常数时间复杂度,是最高效的,而O(2n)则表示较快的增长速度。
摘要由CSDN通过智能技术生成

好算法

正确、健壮、可读 很重要
但是我们更关注它的效率。即希望速度尽可能快;储存空间尽可能少

度量效率需要用到成本
因为成本 = 运行时间+所需存储空间
值得注意的是规模往往是决定计算成本的主要因素
规模T(n)= 需执行的基本操作次数

理应关注规模的最坏情况,由此诞生

大O记号

T(n) = O(f(n)) if 存在c>0,当n>>2后,有T(n)<c*f(n)
T(n)相比 , f(n)更为简洁,并且仍然表示其增长趋势

两个特点

  • 常数项可以忽略 O(f(n)) = O(c*f(n))
  • 低次项可以忽略O(n^(a) + n^b)=O(n^a) a>b>0

接下来是算法效率层级

O(1)

常数(constant function)

2 = 2019 =2019*2019 = O(1) , 甚至20192019 = O(1)

这类的算法效率最高
不含转向(循环、调用、递归等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值