交叉验证、网格搜索、模型选择与调优、鸢尾花案例增加K值调优与Facebook人造世界签到位置train.csv数据预测代码实现

一、交叉验证

交叉验证(cross validation):将拿到的训练数据分为训练和验证集,以下图为例,将数据分成4份,其中一份作为验证集,经过4次(组)的测试,每次都更换不同的验证集,即得到4组模型的结果,取平均值作为最终结果,又称4折交叉验证

交叉验证目的:为了让被评估的模型更加准确可信,交叉验证不能提高模型的准确率

为了让从训练得到模型结果更加准确,分割数据为

  • 训练集:训练集+验证集
  • 测试集:测试集

二、网格搜索

网格搜索(Grid Search):通常情况下,有很多参数需要手动指定的(如k-近邻算法中的K值),这种参数叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合,每组超参数都采用交叉验证来进行评估,最后选出最优参数组合建立模型 ,即把超参数的值通过字典形式传入,然后选择最优值

 交叉验证,网格搜索(模型选择与调优)API:

  • sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None):对估计器的指定参数值进行详尽搜索
    • estimator:估计器对象
    • param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
    • cv:指定几折交叉验证
    • fit:输入训练数据
    • score:准确率
    • 结果分析:
      • bestscore__:在交叉验证中验证的最好结果
      • bestestimator:最好的参数模型
      • cvresults:每次交叉验证后的验证集准确率结果和训练集准确率结果

三、鸢尾花案例增加K值调优

使用GridSearchCV构建估计器

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier  # 导入模块

# 1.获取数据集
iris = load_iris()
# 2.数据基本处理
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)   # 划分数据集
# 3.特征工程:标准化
transfer = StandardScaler()   # 实例化一个转换器类
x_train = transfer.fit_transform(x_train)   # 调用fit_transform
x_test = transfer.transform(x_test)
# 4.KNN预估器流程
estimator = KNeighborsClassifier(n_neighbors=1)   # 实例化预估器类

# 模型选择与调优——网格搜索和交叉验证
param_dict = {"n_neighbors": [1, 3, 5, 7]}   # 准备要调的超参数
estimator = GridSearchCV(estimator, param_grid=param_dict, cv=3)  # estimator:选择了哪个训练模型,cv为几折交叉验证
estimator.fit(x_train, y_train)   # fit数据进行训练
# 5.评估模型效果
# 方法a:比对预测结果和真实值
y_predict = estimator.predict(x_test)
print('预测值是:\n', y_predict)
print("比对预测结果和真实值:\n", y_predict == y_test)
# 方法b:直接计算准确率
score = estimator.score(x_test, y_test)
print("直接计算准确率:\n", score)
# 评估查看最终选择的结果和交叉验证的结果
print("最好的参数模型:\n", estimator.best_estimator_)
print("在交叉验证中验证的最好结果:\n", estimator.best_score_)
print("每次交叉验证后的准确率结果:\n", estimator.cv_results_)
----------------------------------------------------------------
输出:
预测值是:
 [0 2 1 2 1 1 1 1 1 0 2 1 2 2 0 2 1 1 1 1 0 2 0 1 2 0 2 2 2 2 0 0 1 1 1 0 0
 0]
比对预测结果和真实值:
 [ True  True  True  True  True  True  True False  True  True  True  True
  True  True  True  True  True  True False  True  True  True  True  True
  True  True  True  True  True  True  True  True  True  True  True  True
  True  True]
直接计算准确率:
 0.9473684210526315
最好的参数模型:
 KNeighborsClassifier()
在交叉验证中验证的最好结果:
 0.9732100521574205
每次交叉验证后的准确率结果:
 {'mean_fit_time': array([0.00033259, 0.00031996, 0.00066495, 0.00060987]), 'std_fit_time': array([0.00047036, 0.00045249, 0.00047019, 0.00043647]), 'mean_score_time': array([0.00166217, 0.00200717, 0.00171733, 0.00133022]), 'std_score_time': array([4.70134086e-04, 1.72589729e-05, 5.13878713e-04, 4.70639818e-04]), 'param_n_neighbors': masked_array(data=[1, 3, 5, 7],
             mask=[False, False, False, False],
       fill_value='?',
            dtype=object), 'params': [{'n_neighbors': 1}, {'n_neighbors': 3}, {'n_neighbors': 5}, {'n_neighbors': 7}], 'split0_test_score': array([0.97368421, 0.97368421, 0.97368421, 0.97368421]), 'split1_test_score': array([0.97297297, 0.97297297, 0.97297297, 0.97297297]), 'split2_test_score': array([0.94594595, 0.89189189, 0.97297297, 0.97297297]), 'mean_test_score': array([0.96420104, 0.94618303, 0.97321005, 0.97321005]), 'std_test_score': array([0.01291157, 0.03839073, 0.00033528, 0.00033528]), 'rank_test_score': array([3, 4, 1, 1])}

四、Facebook人造世界数据预测

train.csv, test.csv数据获取官网:grid_knn | Kaggle

train.csv, test.csv数据文件内容如下

  • row_ id:登记事件的id        
  • x,y:坐标
  • accuracy: 定位准确性
  • time: 时间戳
  • place. _id:业务的id,这是预测目标
  • 基本步骤
    • 数据处理
      • 缩小数据集范围 DataFrame.query()
      • 选取有用的时间特征
      • 将签到位置少于n个用户的删除
    • 分割数据集
    • 标准化处理
    • k-近邻预测

数据介绍:根据用户的位置,准确性和时间戳预测用户正在查看的业务

 代码如下

import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier  # 导入模块

# 1、获取数据集
facebook = pd.read_csv("../data/train.csv")
# 2.基本数据处理
facebook_data = facebook.query("x>2.0 & x<2.5 & y>2.0 & y<2.5")  # 缩小数据范围
time = pd.to_datetime(facebook_data["time"], unit="s")   # 选择时间特征
time = pd.DatetimeIndex(time)
facebook_data["day"] = time.day
facebook_data["hour"] = time.hour
facebook_data["weekday"] = time.weekday
# 去掉签到较少的地方
place_count = facebook_data.groupby("place_id").count()
place_count = place_count[place_count["row_id"] > 3]
facebook_data = facebook_data[facebook_data["place_id"].isin(place_count.index)]
x = facebook_data[["x", "y", "accuracy", "day", "hour", "weekday"]]   # 确定特征值和目标值
y = facebook_data["place_id"]
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)   # 分割数据集

# 3.特征工程--特征预处理(标准化)
transfer = StandardScaler()  # 实例化一个转换器
x_train = transfer.fit_transform(x_train)   # 调用fit_transform
x_test = transfer.fit_transform(x_test)

# 4.机器学习--knn+cv
estimator = KNeighborsClassifier()   # 实例化一个估计器
param_grid = {"n_neighbors": [1, 3, 5, 7, 9]}  # 准备要调的超参数
estimator = GridSearchCV(estimator, param_grid=param_grid, cv=10)   # 调用gridsearchCV,10折交叉验证
estimator.fit(x_train, y_train)   # 模型训练
# 5.模型评估
# 基本评估方式
score = estimator.score(x_test, y_test)
print("最后预测的准确率为:\n", score)

y_predict = estimator.predict(x_test)
print("最后的预测值为:\n", y_predict)
print("预测值和真实值的对比情况:\n", y_predict == y_test)

# 使用交叉验证后的评估方式
print("在交叉验证中验证的最好结果:\n", estimator.best_score_)
print("最好的参数模型:\n", estimator.best_estimator_)
print("每次交叉验证后的验证集准确率结果和训练集准确率结果:\n", estimator.cv_results_)
----------------------------------------------------------
输出:
最后预测的准确率为:
 0.36804111804111805
最后的预测值为:
 [9983648790 5806536504 9674001925 ... 1247398579 3455925971 5100539171]
预测值和真实值的对比情况:
 24703810     True
19445902    False
18490063     True
7762709     False
6505956     False
            ...  
27632888    False
23367671    False
6692268     False
25834435    False
13319005    False
Name: place_id, Length: 17316, dtype: bool
在交叉验证中验证的最好结果:
 0.36276655562074106
最好的参数模型:
 KNeighborsClassifier()
每次交叉验证后的验证集准确率结果和训练集准确率结果:
 {'mean_fit_time': array([0.2586242 , 0.29684422, 0.27456429, 0.30488372, 0.31562543]), 'std_fit_time': array([0.08488032, 0.07275422, 0.10609217, 0.10391282, 0.0656314 ]), 'mean_score_time': array([0.51792595, 0.61323991, 0.72256181, 0.88158529, 0.97560654]), 'std_score_time': array([0.10981396, 0.11335467, 0.24410747, 0.13826019, 0.14417211]), 'param_n_neighbors': masked_array(data=[1, 3, 5, 7, 9],
             mask=[False, False, False, False, False],
       fill_value='?',
            dtype=object), 'params': [{'n_neighbors': 1}, {'n_neighbors': 3}, {'n_neighbors': 5}, {'n_neighbors': 7}, {'n_neighbors': 9}], 'split0_test_score': array([0.36650626, 0.35534167, 0.3653513 , 0.36496631, 0.35611165]), 'split1_test_score': array([0.36323388, 0.35630414, 0.35765159, 0.36034649, 0.3574591 ]), 'split2_test_score': array([0.3680462 , 0.35437921, 0.36284889, 0.36111646, 0.36419634]), 'split3_test_score': array([0.36169394, 0.35091434, 0.36438884, 0.36458133, 0.36188643]), 'split4_test_score': array([0.35842156, 0.34898941, 0.35380173, 0.35784408, 0.3520693 ]), 'split5_test_score': array([0.35399423, 0.34879692, 0.36111646, 0.35861405, 0.35668912]), 'split6_test_score': array([0.3599615 , 0.35303176, 0.36785371, 0.36458133, 0.35899904]), 'split7_test_score': array([0.3574591 , 0.35688162, 0.37208855, 0.37170356, 0.36053898]), 'split8_test_score': array([0.35444744, 0.34674625, 0.36176357, 0.35425491, 0.34867154]), 'split9_test_score': array([0.3600308 , 0.35252214, 0.36080092, 0.35829804, 0.35656527]), 'mean_test_score': array([0.36037949, 0.35239075, 0.36276656, 0.36163066, 0.35731868]), 'std_test_score': array([0.00441373, 0.00327258, 0.00486026, 0.0046996 , 0.00431428]), 'rank_test_score': array([3, 5, 1, 2, 4])}

学习导航:http://xqnav.top/

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
模型评估和调优是机器学习流程中非常重要的一环。在决策树模型中,需要了解如何评估和调优模型的性能,以获得更好的预测结果。 模型评估 模型评估是指通过一些指标来评估模型的性能。在决策树模型中,常用的评估指标包括准确率、精确率、召回率、F1等。其中,准确率是指模型预测正确的样本数占总样本数的比例;精确率是指模型正确预测为正类的样本数占预测为正类的样本数的比例;召回率是指模型正确预测为正类的样本数占实际为正类的样本数的比例;F1是综合考虑精确率和召回率的指标。 除了单一指标的评估,还可以使用交叉验证的方法进行评估。交叉验证是将数据集分为若干份,每次使用其中一份作为测试集,其余作为训练集,多次进行模型训练和测试,最终得到平均作为评估指标。这样可以避免因数据集划分不同而导致的评估结果不同的问题。 模型调优 模型调优是指寻找最优的模型参数,以获得最佳的预测结果。在决策树模型中,常用的调优方法包括网格搜索和随机搜索。 网格搜索是指对一组参数进行排列组合,分别训练模型并评估性能,最终得到最优参数组合的方法。例如,在决策树模型中可以调节树的深度、叶子节点最小样本数等参数进行网格搜索。 随机搜索是指在参数空间中随机采样一些参数组合,训练模型并评估性能,最终得到最优参数组合的方法。与网格搜索相比,随机搜索可以更快地找到最优参数组合,但不一定能找到全局最优解。 除了参数调优,还可以采用集成学习的方法来提高模型性能。集成学习是指将多个模型预测结果进行加权平均或投票,以获得更准确的预测结果。在决策树模型中,常用的集成学习方法包括随机森林和梯度提升树。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

learning-striving

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值