12.28---Convergence analysis of some algorithms for solving nonsmooth equations(LiQun Qi)

一、摘要

这篇文章主要讲了一些求解非线性方程( 其中方程具有局部李普希兹的性质)系统的算法收敛性

  • 基于方向导数和雅可比的牛顿法,迭代和函数值都是局部超线性收敛
  • 在一些假设条件下,由阻尼、基于方向导数的牛顿法产生的点列的极限点是全局收敛的
  • 本文提出了一个更一般的定理用于证明收敛性
  • 最后提出了一个混合方法,满足全局收敛和局部二次收

二、背景及基础知识介绍

我们考虑一个优化问题

其实就等价于找F(x)=0的解 。

对于求解这样的问题,如果函数F是可微的,就可以直接采用牛顿法 ,有时为了达到全局收敛性,我们还会使用过阻尼牛顿法(利用线搜索技巧确定步长而不是取单位步长);如果F是不可谓的,通常采用两种策略:采用F的广义雅可比代替F的雅可比、通过求解通过求解

 获得迭代方向.

这篇文章结论的得出需要一些引理的应用,以及一些正则性条件(正则性条件类似于光滑条件下对其导数非奇异的条件)

B-可微:

一个函数F在x点处是B-可微的,如果在这一点处它的方向到处存在并且满足下面这个式子:

 在一个有限维的欧氏空间中,一个局部李普希兹函数在x点处是B可微函数当且仅当它在x点处方向可微。【REF:On concepts on directional differentiability ;Shapiro】

半光滑: 

 如果F在x点处是半光滑的,则F在这一点出方向可微并且它的方向导数等于(2.6)式。

在实际应用中很多函数都是半光滑函数,例如常见的非线性互补问题。

BD-正则

 

三、定理介绍

  

这个引理的证明用到了另外一篇文献的结论,这里给出具体内容

 

  

 

 

证明思路:利用二阶半连续以及二阶B-可微的定义,结合上面已经证明的引理内容得到结论。其中涉及到放缩部分同样利用了等量代换和凑项的技巧 。

 这一定理是想说明方向导数不为0

证明思路:反证法,假设结论不成立,最后于F满足BD-正则的条件导出矛盾,从而结论得证.

下面是一个关于BD-正则函数的结论

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值