scikit-learn学习记录
dhsjjwj
这个作者很懒,什么都没留下…
展开
-
线性回归
线性模型目标值是特征的线性组合就称为线性回归。普通的最小二乘法寻找w=(w1,w2,...,wp)w=(w_1, w_2, ..., w_p)w=(w1,w2,...,wp)使得minw∣∣Xw−y∣∣22min_w||Xw-y||_2^2minw∣∣Xw−y∣∣22。from sklearn import linear_modelreg = linear_model.LinearRegression()reg.fit([[0, 0], [1, 1], [2, 2]], [0, 1,原创 2020-10-04 19:51:21 · 259 阅读 · 0 评论 -
数据加载工具
在sklearn.datasets包中内嵌了一些小型数据集。通用的dataset APIThe dataset loaders: 加载小型数据The dataset fetchers:下载和加载大型数据集The dataset generation functions:生成受控的合成数据集loaders和fetchers都返回至少有两项的sklearn.utils.Bunch对象(就是一个字典):一个大小是n_samples * n_features并且带有标签data的数组,和一个长度是n_原创 2020-09-28 19:04:53 · 262 阅读 · 0 评论 -
走马观花学习scikit-learn
拟合和预测,估计器基础from sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(random_state=0)X = [[1, 2, 3], [11, 12, 13]]y = [0, 1]clf.fit(X, y)'''fit方法接受两个参数,X和y(通常都是numpy的数组)X是样本矩阵,大小通常是(n_samples, n_features)y是目标值,对于回归任务是实数,原创 2020-09-27 15:53:44 · 177 阅读 · 0 评论