卷积神经网络学习
dhsjjwj
这个作者很懒,什么都没留下…
展开
-
卷积神经网络的实践应用
数据扩充简单的数据扩充方式图像水平翻转(水平饭庄可以令数据集扩充一倍)随机抠取(一般用较大的正方形在原图的随机位置处抠取图像块,抠取的次数决定了数据集扩充的倍数)卷积神经网络模型的输入一般是方形图像尺度变换(一般是将图像分辨率变成原图的0.8,0.9,1.1,1.2,1.3等倍数,将尺度变换后的图像作为扩充的训练样本加入原训练集)旋转(增加卷积神经网络对物体尺度和方向上的鲁棒性)对原图或者已经变换的图像(或者图像块)进行色彩抖动(色彩抖动是在RGB颜色空间对原有RGB色彩分布进行轻微的扰动,原创 2020-11-29 19:16:27 · 1493 阅读 · 0 评论 -
卷积神经网络的压缩
为什么要对卷积神经网络进行压缩?因为卷积神经网络需要的参数个数非常多,计算所需的次数和代价都非常大,因此需要进行压缩。两种压缩策略不存在绝对的好坏,各种方法均有其各自的适应场景。并且,两种压缩技术可以相互结合,将“前端压缩”的输出作为“后端压缩”的输入,能够在最大程度上减少模型的复杂度。低秩近似低秩近似属于后端压缩技术中的一种。卷积神经网络中的基本计算模式是进行卷积运算。具体实现中,卷积操作由矩阵相乘完成。但是,通常权重矩阵旺旺稠密并且巨大,从而带来计算和存储上的巨大开销。为解决这种情况的一种直原创 2020-11-29 13:12:58 · 712 阅读 · 0 评论 -
卷积神经网络经典结构
CNN网络结构中的重要概念感受野分布式表示在深度学习中,深度卷积神经网络呈现“分布式表示”的特性。神经网络中的“分布式表示”指“语义概念”到神经元是一个多对多映射。即每个语义概念由许多分布在不同神经元中被激活的模式表示;而每个神经元又可以参与到许多不同语义概念的表示中去。深度特征的层次性浅层卷积核学到的是基本模式,例如:边缘、方向、纹理的特征表示;较深层卷积可以学习到一些高层语义模式,例如:文字,人脸等;分享一篇介绍的很好的博客传送门残差网络模型神经网络的深度和宽度是表征网络复杂度的原创 2020-11-28 13:03:19 · 486 阅读 · 0 评论 -
卷积神经网络基本部件
“端到端”思想机器学习算法中,其输入的特征需要是人工选择好的特征,机器学习算法负责的只是从这些特征中学习就可以了,但是因为特征的好坏是影响算法性能的关键,并且选择特征也不是简单的事情,有必要将其自动化。深度学习为我们提供了一种范式,即“端到端”学习方式,整个学习流程并不进行人为的子问题划分,而是完全交给深度学习模型直接学习从原始输入到期望输出的映射。即对于深度学习模型来说,其输入数据是未经过任何认为加工的原始样本形式,后续则是堆叠在输入层上的众多操作层。网络中的符号定义三维张量xl∈RHl×Wl×原创 2020-11-23 10:45:36 · 714 阅读 · 0 评论 -
初识卷积神经网络
卷积神经网络是一类特殊的人工神经网络,区别于神经网络其他模型,卷积神经网络的主要操作是卷积运算操作。因此,CNN在诸多领域应用特别是图像相关任务上表现优异。例如:图像分类、图像语义分割、图像检索、物体检测等计算机视觉问题。基本结构卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像,原始音频数据等。卷积神经网络通过卷积操作,汇合操作和非线性激活函数映射等一系列操作的层层堆叠,将高层语义信息逐层由原始数据输入层中抽取出来,逐层抽象,这一过程便是前馈运算。不同类型操作在卷积神经网络中一般称为“层”:原创 2020-11-22 22:24:46 · 207 阅读 · 0 评论