CSUSTOJ-石上优不想留级(一维坐标三分及思维解法)

题目连接:http://acm.csust.edu.cn/problem/4043
博客园食用链接: https://www.cnblogs.com/lonely-wind-/p/13941890.html

Description

众所周知,石上同学由于沉迷游戏,导致成绩惨淡,要是这次考试再不及格,他就要留级了,由于这次考前接受过四宫前辈的教导,如果再不及格,石上一定会死的很惨(因为四宫前辈太恐怖了),于是石上通宵刷题,但是他被一道简单题卡住了,于是他向你求助(因为四宫前辈太可怕,不敢去问),希望你能帮帮他。

这道题是这样的:在一个三维空间上,有 n n n 个点,每个点的坐标用 ( x i , y i , z i ) (x_i, y_i, z_i) (xi,yi,zi) 表示, 现在需要你找到一个点 ( x , y , z ) (x, y, z) (x,y,z) ,使得其他 n n n 个点到这个点的曼哈顿距离最小。

两个点 i , j i, j i,j 之间的曼哈顿距离 d i s dis dis 定义为: d i s = ∣ x i − x j ∣ + ∣ y i − y j ∣ + ∣ z i − z j ∣ dis = |x_i - x_j| + |y_i - y_j| + |z_i - z_j| dis=xixj+yiyj+zizj

∣ a − b ∣ |a - b| ab 表示 a a a b b b 的差值的绝对值

input

第一行一个整数 n n n , ( 1 ≤ n ≤ 1 e 5 ) (1 \leq n \leq 1e5) (1n1e5)

接下来有 n n n 行,每行 3 3 3 个数 x , y , z x, y, z x,y,z ,代表第 i i i 个数的坐标, ( − 1 e 9 ≤ x , y , z ≤ 1 e 9 ) (-1e9 \leq x,y,z \leq 1e9) (1e9x,y,z1e9)

output

输出一个整数,表示答案

Sample Input 1
3
-5 -10 -9
-2 7 2
-9 5 -4
Sample Output 1
35

Sample Input 2
2
-3 2 -2
-2 -5 -5
Sample Output 2
11

emmm,看一下要求的,假设我们找到的点为P那么答案就是: a n s = m i n ( ∑ i = 1 n ∣ x p − x i ∣ + ∣ y p − y i ∣ + ∣ z p − z i ∣ ) ans=min(\sum_{i=1}^{n}|x_p-x_i|+|y_p-y_i|+|z_p-z_i|) ans=min(i=1nxpxi+ypyi+zpzi),那么由于都是取绝对值的,所以我们可以直接化为 a n s = m i n ( ∑ i = 1 n ∣ x p − x i ∣ ) + m i n ( ∑ ∣ y p − y i ∣ ) + m i n ( ∑ z p − z i ) ans=min(\sum_{i=1}^{n}|x_p-x_i|)+min(\sum|y_p-y_i|)+min(\sum z_p-z_i) ans=min(i=1nxpxi)+min(ypyi)+min(zpzi),也就是我们只需要解决一个问题就好了,也就是解决求解 m i n ( ∑ x p − x i ) min(\sum x_p-x_i) min(xpxi),很明显这个结果在一维坐标轴上从左到右他是一个先降后增的。也就是一个二次函数抛物线形的,那么也就可以直接三分求解 x p x_p xp了,其他的同理可得。

以下是AC代码:

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int mac=1e5+10;
const int inf=1e9+10;

int x[mac],y[mac],z[mac];
int n;

ll cal(ll x,int *a)
{
	ll ans=0;
	for (int i=1; i<=n; i++)
		ans+=abs(x-a[i]);
	return ans;
}

ll solve(int *a) {
    ll l = -inf, r = inf;
    while(l < r) {
        ll x1 = floor(1.0 * (2ll * l + r) / 3);
        ll x2 = floor(1.0 * (l + 2ll * r + 2) / 3);
        if(cal(x1,a) < cal(x2,a)) r = x2 - 1;
        else l = x1 + 1;
    }
    return r;
}

int main(int argc, char const *argv[])
{
	scanf ("%d",&n);
	for (int i=1; i<=n; i++)
		scanf ("%d%d%d",&x[i],&y[i],&z[i]);
	ll xp=solve(x);
	ll yp=solve(y);
	ll zp=solve(z);
	ll ans=0;
	for (int i=1; i<=n; i++)
		ans+=(abs(xp-x[i])+abs(yp-y[i])+abs(zp-z[i]));
	printf("%lld\n",ans);
	return 0;
}

当然实际上用不着这么麻烦,实际上有个结论,我们直接取每个坐标的中位数就行了。

以下是AC代码:

#include <bits/stdc++.h>
using namespace std;

#define srt(x) sort(x,x+n)
const int mac=1e5+10;
typedef long long ll;

ll x[mac],y[mac],z[mac];

int main(int argc, char const *argv[])
{
	int n;
	scanf ("%d",&n);
	for (int i=0; i<n; i++)
		scanf ("%lld%lld%lld",&x[i],&y[i],&z[i]);
	srt(x);srt(y);srt(z);
	ll ans=0;
	for (int i=0; i<n; i++)
		ans+=abs(x[n/2]-x[i])+abs(y[n/2]-y[i])+abs(z[n/2]-z[i]);
	printf("%lld\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值