数论——【模板】欧拉定理


好久没写题解了啊……其实我并没有颓废,只是刷树形DP去了

没写题解的原因…

题目描述

给定 a , b , c a,b,c a,b,c,有 a , c ≤ 1 0 9 , b ≤ 1 0 20000000 a,c\leq10^9, b\leq10^{20000000} a,c109,b1020000000,求 a b   m o d   c a^b\bmod c abmodc

  1. 单组数据版——LG
  2. 多组数据版——Vjudge

(话说直接做多组数据版就双倍经验了嘛……)

欧拉定理

就是: a φ ( m ) ≡ 1 ( m o d m ) , ( a , m ) = 1 a^{\varphi(m)}\equiv 1\pmod m,(a,m)=1 aφ(m)1(modm),(a,m)=1
欧拉定理可以用于降幂,可以得到 a b = a b   m o d   φ ( m ) + φ ( m ) ( m o d m ) ( b ≥ m ) a^b=a^{b\bmod{\varphi(m)}+\varphi(m)}\pmod m(b\geq m) ab=abmodφ(m)+φ(m)(modm)(bm)

分析

这道题肯定是用降幂公式啦~(废话)
首先,因为 b b b是一个高精数,所以我们要用高模低(两行代码……),求出 b   m o d   φ ( c ) b\bmod \varphi(c) bmodφ(c),至于 φ ( c ) \varphi(c) φ(c),可以用 O ( n ) O(\sqrt{n}) O(n )算出来。
似乎没毛病了?交一波,于是——This Happened……
为什么有这种**的东西呢?看一下降幂的那一部分,需要满足 b ≥ m b\geq m bm,就是有 b ≥ c b\geq c bc,例如这组数据:2 4 1(LG版),输出应该是21 mod 4=2,但是这样做输出是0,所以如果 b ≤ c b\leq c bc的话,就可以不用加那个 φ ( c ) \varphi(c) φ(c)了,直接一波上去就好。

参考代码

1: LG版

#include<map>
#include<set>
#include<list>
#include<queue>
#include<deque>
#include<stack>
#include<ctime>
#include<cmath>
#include<vector>
#include<bitset>
#include<cctype>
#include<string>
#include<sstream>
#include<fstream>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<iomanip>
#include<iostream>
#include<algorithm>
using namespace std;
#define reg register
#define Max(a, b) ( a > b ? a : b )
#define Min(a, b) ( a < b ? a : b )
#define Abs(a) ( a > 0 ? a : -a )
long long a, m, p, b;
char c[20000001];
inline long long phi(long long n) {
    long long res = n;
    for(reg long long i = 2; i <= sqrt(n); i++) {
        if(n % i == 0) {
            res = res / i * (i - 1);
            while(n % i == 0) n /= i;
        }
    }
    if(n > 1) res = res / n * (n - 1);
    return res;
}
inline long long piow(long long a, long long b, long long MOD) {
    reg long long ans = 1;
    while(b) {
        if(b & 1) ans = ans * a % MOD;
        a = a * a % MOD;
        b >>= 1;
    }
    return ans;
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(); cout.tie();
    cin >> a >> m >> c;
    int len = strlen(c); p = phi(m);
    //求c % p
    bool flag = 0;
    for(reg int i = 0; i < len; i++) {
        b = b * 10 + c[i] - '0';
        if(b >= p) flag = 1;
        b %= p;
    }
    cout << piow(a, b + flag * p, m) << endl;
}

2:Vjudge版

#include<map>
#include<set>
#include<list>
#include<queue>
#include<deque>
#include<stack>
#include<ctime>
#include<cmath>
#include<vector>
#include<bitset>
#include<cctype>
#include<string>
#include<sstream>
#include<fstream>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<iomanip>
#include<iostream>
#include<algorithm>
using namespace std;
#define reg register
#define Max(a, b) ( a > b ? a : b )
#define Min(a, b) ( a < b ? a : b )
#define Abs(a) ( a > 0 ? a : -a )
long long a, m, p, b;
char c[1000001];
inline long long phi(long long n) {
    long long res = n;
    for(reg long long i = 2; i <= sqrt(n); i++) {
        if(n % i == 0) {
            res = res / i * (i - 1);
            while(n % i == 0) n /= i;
        }
    }
    if(n > 1) res = res / n * (n - 1);
    return res;
}
inline long long piow(long long a, long long b, long long MOD) {
    reg long long ans = 1;
    while(b) {
        if(b & 1) ans = ans * a % MOD;
        a = a * a % MOD;
        b >>= 1;
    }
    return ans;
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(); cout.tie();
    while(cin >> a >> c >> m) {
        b = 0;//注意清0……
        int len = strlen(c); p = phi(m);
        //求c % p
        bool flag = 0;
        for(reg int i = 0; i < len; i++) {
            b = b * 10 + c[i] - '0';
            if(b >= p) flag = 1;
            b %= p;
        }
        cout << piow(a, b + flag * p, m) << endl;
    }
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值