题目描述
前置芝士
你得学会高精度数除以低精度数,当然,能用压位高精最好(亲测极限数据压位高精慢了整整7ms!!!)
正题
俗话说得好,数学上来先打表,于是:
1. 1
2. 12
3. 121
4. 1213
5. 12131
6. 121312
7. 1213121
8. 12131214
9. 121312141
10. 1213121412
11. 12131214121
12. 121312141213
13. 1213121412131
14. 12131214121312
15. 121312141213121
16. 1213121412131215
17. 12131214121312151
18. 121312141213121512
19. 1213121412131215121
20. 12131214121312151213
统计成表格,可得:
s e q i seq_i seqi | 对应的 i i i |
---|---|
1 | 1,3,5,7,9,11,13,15,17,19 |
2 | 2,6,10,14,18 |
3 | 4,12,20 |
4 | 8 |
5 | 16 |
然后,我们Σ( ° △ °||| 震惊的发现了,在每个 i i i的质因数分解中,若 i = 2 k ∗ n , ( k , n ∈ N ) i=2^k*n,(k,n\in\mathbb{N}) i=2k∗n,(k,n∈N),那么 s e q i = k + 1 seq_i=k+1 s