【C++】数论——数列

博客主要介绍了如何利用C++解决数论问题,特别是关于数列的规律探究。通过对数列的观察,发现每个数i的质因数分解中,若i=2k*n (k,n∈N),则数列中对应的项seqi=k+1。为了处理大范围的数据,文章建议使用高精度数除以低精度数的方法,并给出了模拟log过程的解决方案,以达到O(logn logn)的时间复杂度。" 117343719,10541382,Android自定义弧形旋转菜单栏实现,"['Android开发', 'UI设计', '自定义视图']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Title Of This Paragraph


题目描述

描述

前置芝士

当然是这个辣

你得学会高精度数除以低精度数,当然,能用压位高精最好(亲测极限数据压位高精慢了整整7ms!!!

正题

俗话说得好,数学上来先打表,于是:
1. 1
2. 12
3. 121
4. 1213
5. 12131
6. 121312
7. 1213121
8. 12131214
9. 121312141
10. 1213121412
11. 12131214121
12. 121312141213
13. 1213121412131
14. 12131214121312
15. 121312141213121
16. 1213121412131215
17. 12131214121312151
18. 121312141213121512
19. 1213121412131215121
20. 12131214121312151213

统计成表格,可得:

s e q i seq_i seqi 对应的 i i i
1 1,3,5,7,9,11,13,15,17,19
2 2,6,10,14,18
3 4,12,20
4 8
5 16

然后,我们Σ( ° △ °||| 震惊的发现了,在每个 i i i的质因数分解中,若 i = 2 k ∗ n , ( k , n ∈ N ) i=2^k*n,(k,n\in\mathbb{N}) i=2kn,(k,nN),那么 s e q i = k + 1 seq_i=k+1 s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值