线索化二叉树

线索化二叉树

问题引入

将数列 {1, 3, 6, 8, 10, 14 } 构建成一颗二叉树. n+1=7

在这里插入图片描述

问题分析:

  1. 当我们对上面的二叉树进行中序遍历时,数列为 {8, 3, 10, 1, 6, 14 }
  2. 但是 6, 8, 10, 14 这几个节点的 左右指针,并没有完全的利用上.
  3. 如果我们希望充分的利用 各个节点的左右指针, 让各个节点可以指向自己的前后节点,怎么办?
  4. 解决方案- 线索二叉树

基本介绍

  1. n 个结点的二叉链表中含有 n+1 【公式 2n-(n-1)=n+1】 个空指针域。利用二叉链表中的空指针域,存放指向
    该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")

  2. 这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质
    的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种

  3. 一个结点的前一个结点,称为前驱结点

  4. 一个结点的后一个结点,称为后继结点

  5. 总结: 其实就是把二叉树中的叶子节点(或者只有一个孩子的节点)的 left或者right指针 分别 指向它的前驱和后继节点

应用实例

应用案例说明:将下面的二叉树,进行中序线索二叉树。中序遍历的数列为 {8, 3, 10, 1, 14, 6}

在这里插入图片描述

思路分析: 中序遍历的结果:{8, 3, 10, 1, 14, 6}

在这里插入图片描述

说明: 当线索化二叉树后,Node 节点的 属性 left 和 right ,有如下情况:

  1. left 指向的是左子树,也可能是指向的前驱节点. 比如 ① 节点 left 指向的左子树, 而 ⑩ 节点的 left 指向的
    就是前驱节点.
  2. right 指向的是右子树,也可能是指向后继节点,比如 ① 节点 right 指向的是右子树,而⑩ 节点的 right 指向
    的是后继节点.

代码实现(前中后序都有)

说明: 要关注的是带有线索化字样的方法, 前和后是自己写的不一定正确, 但我感觉是对的。! 我感觉自己的前后序遍历写的有点问题,虽然结果是对的。。。

public class ThreadedBinaryTreeDemo {

    public static void main(String[] args) {
        HeroNode root = new HeroNode(1, "tom");
        HeroNode node2 = new HeroNode(3, "jack");
        HeroNode node3 = new HeroNode(6, "smith");
        HeroNode node4 = new HeroNode(8, "mary");
        HeroNode node5 = new HeroNode(10, "king");
        HeroNode node6 = new HeroNode(14, "dim");
        HeroNode node7 = new HeroNode(16,"zhuge");

        //二叉树,后面我们要递归创建, 现在简单处理使用手动创建
        root.setLeft(node2);
        root.setRight(node3);
        node2.setLeft(node4);
        node2.setRight(node5);
        node3.setLeft(node6);
        node3.setRight(node7);

        //测试中序线索化
        ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
//        threadedBinaryTree.setRoot(root);
//        threadedBinaryTree.threadedNodes();
//
//        //测试: 以 10 号节点测试
//        HeroNode leftNode = node5.getLeft();
//        HeroNode rightNode = node5.getRight();
//        System.out.println("10 号结点的前驱结点是 =" + leftNode); //3
//        System.out.println("10 号结点的后继结点是=" + rightNode); //1
//
//        //当线索化二叉树后,不能在使用原来的遍历方法
//        //threadedBinaryTree.infixOrder();
//        System.out.println("使用中序线索化的方式遍历 线索化二叉树");
//        threadedBinaryTree.threadedList();// 8 3 10 1 14 6 16

        //测试前序线索化
        threadedBinaryTree.setRoot(root);
        threadedBinaryTree.preThreadedNodes();

        //测试: 以 10 号节点测试
        HeroNode leftNode = node5.getLeft();
        HeroNode rightNode = node5.getRight();
        System.out.println("10 号结点的前驱结点是=" + leftNode); //8
        System.out.println("10 号结点的后继结点是=" + rightNode); //6
        /*
        注: 线索化二叉树对于非叶子节点来说, 它的left,right就是左右孩子
            所以测试的时候我们要测叶子节点或者只有一个孩子的节点(我拿3节点测的,测出8 和 10 ,我还以为写错了,原来是对的)
         */

        //测试前序线索化遍历
        System.out.println("使用前序线索化的方式遍历 线索化二叉树");
        threadedBinaryTree.preThreadedList();// 1 3 8 10 6 14 16

        //测试后序线索化
//        threadedBinaryTree.setRoot(root);
//        threadedBinaryTree.postThreadedNodes();
//
//        //测试: 以 10 号节点(值为10)测试
//        HeroNode leftNode = node5.getLeft();
//        HeroNode rightNode = node5.getRight();
//        System.out.println("10 号结点的前驱结点是=" + leftNode); //8
//        System.out.println("10 号结点的后继结点是=" + rightNode); //3
//        /*
//        注: 线索化二叉树对于非叶子节点来说, 它的left,right就是左右孩子
//            所以测试的时候我们要测叶子节点或者只有一个孩子的节点(我拿3节点测的,测出8 和 10 ,我还以为写错了,原来是对的)
//         */
//
//        //测试后序线索化遍历
//        System.out.println("使用后序线索化的方式遍历 线索化二叉树");
//        threadedBinaryTree.postThreadedList();// 8 10 3 14 16 6 1



    }

}


//定义ThreadedBinaryTree  实现了线索化功能的二叉树
class ThreadedBinaryTree {
    private HeroNode root;

    //为了实现线索化, 需要创建要给指向当前节点的前驱节点的指针
    //在递归进行线索化时, pre 总是保留前一个节点
    private HeroNode pre1 = null;
    private HeroNode pre2 = null;
    private HeroNode pre3 = null;

    public void setRoot(HeroNode root) {
        this.root = root;
    }

    //重载一下threadedNodes
    public void threadedNodes(){
        this.threadedNodes(root);
    }

    //重载一下preThreadedNodes
    public void preThreadedNodes(){
        this.preThreadedNodes(root);
    }

    //重载一下postThreadedNodes
    public void postThreadedNodes(){
        this.postThreadedNodes(root);
    }

    //前序遍历线索化二叉树的方法
    public void preThreadedList(){
        HeroNode node = root;

            //当前序遍历到当前节点时就直接先输出
            System.out.println(node);
            while (node.getLeftType() != 1) {
                node = node.getLeft();
                System.out.println(node);
            }
            //跳出while循环时,左子树全部打印完了
            //如果指向的节点的右指针right指向的是后继节点, 就一直输出
            while (node.getRightType() == 1) {
                node = node.getRight();
                System.out.println(node);
            }
            //现在来到右子树的根节点
            node = node.getLeft();
            System.out.println(node);
            while (node.getLeftType() != 1){
                node = node.getLeft();
                System.out.println(node);
            }
            while (node.getRightType() == 1) {
                node = node.getRight();
                System.out.println(node);
            }

    }

    //中序遍历线索化二叉树的方法
    public void threadedList(){
        //定义一个变量, 存储当前遍历的节点, 从root开始
        HeroNode node = root;
        while (node != null){
            //循环的找到leftType == 1的节点, 第一个找到就是8 节点
            //后面随着遍历而变化, 因为当leftType == 1时, 说明该节点是按照线索化处理后的有效节点
            while (node.getLeftType() == 0){
                node = node.getLeft();
            }//当循环结束时, node就指向中序线索化的第一个节点

            //输出node最终指向的节点
            System.out.println(node);
            //如果指向的节点的右指针right指向的是后继节点, 就一直输出(左斜树的情况)
            while (node.getRightType() == 1){
                node = node.getRight();
                System.out.println(node);
            }

            //当跳出while循环时,node指向的是有右孩子的节点(该节点的值已经输出了)
            //所以将node替换为它的右孩子
            node = node.getRight();

        }

    }

    //后序遍历线索化二叉树的方法
    public void postThreadedList() {
        //定义一个变量, 存储当前遍历的节点, 从root开始
        HeroNode node = root;
        //当遍历到根节点,判断条件为right指向的不是后继节点
        //我不会把右 半段放到while循环里, 所以代码冗余了一些。。

            //先找到第一个要输出的点(最左边的那个)
            while (node.getLeftType() == 0) {
                node = node.getLeft();
            }
            /*
            注: 后序遍历线索化跟中序也不完全一样, 当最左边的子树只有右孩子的时侯,
                跳出while循环的时候指向的是父节点, 但此时我们不能像中序那样直接输出,
                 因为后序遍历是(左右根),当没有左的时候输出右(中序在没有左的时候正好输出根)
                 所以我们要判断父节点有没有左孩子,有的话就直接输出,
                  没有的话又分两种情况(都包含在了下面的判断里)
                    1、有右孩子就输出右孩子
                    2、没有右孩子
             */
            if (node.getRight().getLeft() == null) {
                System.out.println(node.getRight());
            } else {
                System.out.println(node);
            }
            while (node.getRightType() == 1) {
                node = node.getRight();
                System.out.println(node);
            }
            /*
            注: 这里就不能直接向中序那样指向右孩子,
                因为跳出while循环后指向的是父节点,而父节点是有右孩子的(它的right不指向后继节点)
                所以我们要手动调到右半边打印
             */
            node = root.getRight();
            while (node.getLeftType() == 0) {
                node = node.getLeft();
            }
            if (node.getRight().getLeft() == null) {
                System.out.println(node.getRight());
            } else {
                System.out.println(node);
            }
            while (node.getRightType() == 1) {
                node = node.getRight();
                System.out.println(node);
            }
        System.out.println(root);

    }

    //编写对二叉树进行前序线索化的方法
    public void preThreadedNodes(HeroNode node){

        //如果node==null, 不能线索化
        if (node == null){
            return;
        }
        //(1)先对当前节点进行线索化
        //先处理当前节点的前驱节点
        if (node.getLeft() == null){
            node.setLeft(pre2);
            node.setLeftType(1);
        }

        //再处理后继节点
        if (pre2 != null && pre2.getRight() == null){
            pre2.setRight(node);
            pre2.setRightType(1);
        }

        //在处理完当前节点时,就要把node赋给pre2引用
        pre2 = node;

        //(2)再对左子树进行线索化
        if (node.getLeft() != null && node.getLeftType() != 1) {
            preThreadedNodes(node.getLeft());
        }
        /*
        如果这样写的话(没有if)到8的时候它的左边(getleft()已经是3节点了,所以会无限循环,直到栈溢出报错)

         */


        //(3)最后对右子树进行线索化
        if (node.getRight() != null && node.getRightType() != 1) {
            preThreadedNodes(node.getRight());
        }


    }

    //编写对二叉树进行中序线索化的方法

    /**
     *
     * @param node 就是当前需要线索化的节点
     */
    public void threadedNodes(HeroNode node){

        //如果node==null, 不能线索化
        if (node == null){
            return;
        }

        //(1)先线索化左子树
        threadedNodes(node.getLeft());
        //(2)线索化当前节点(重要,有难度)

        //处理当前节点的前驱节点
        //以8节点来理解
        //8节点的.left = null , 8节点的.leftType = 1
        //这里判断当前节点的left是否为空, 其实是想确定当前节点是否为叶子节点,是的话就可以将left指向前驱节点了
        if (node.getLeft() == null){
            node.setLeft(pre1);
            node.setLeftType(1);
        }

        //再处理后继节点(这个if语句其实是在下一个节点调用方法时执行的)
        /*
        还是以8 节点为例
        当我们处理完 8节点的前驱节点时,我们无法直接处理8 节点的后继节点,因为我们没有引用能够找到它
        因此当我们返回到3 节点的那个调用里时,pre = node;已经把8 节点放到了pre里,
        并且此时我们的node就是指向8 节点的后继节点(3),这样就很好操作了。

         pre.getRight() == null一句就是为了判断上一个节点没有右孩子
         */
        if (pre1 != null && pre1.getRight() == null){
            pre1.setRight(node);
            pre1.setRightType(1);
        }

        //每处理一个节点后, 让当前节点是下一个节点的前驱节点
        pre1 = node;

        //(3)线索化右子树
        threadedNodes(node.getRight());

    }

    //编写对二叉树进行后序线索化的方法
    public void postThreadedNodes(HeroNode node){

        if (node == null){
            return;
        }

        /*
        注: 只有在前序线索化的时候,要在线索化左右子树之前进行  left或right  是否已经为1 的判断
          因为 前序线索化时 , 是先把当前节点的  left或right 给赋值了,再进行的左右子树的线索化,
          如果不进行判断,就会在返回上层递归时进入死循环(因为那时pre指向的节点不为空,所以就不能返回,而是继续调用方法)
         */
        //(1)先线索化左子树
        postThreadedNodes(node.getLeft());

        //(2)在线索化右子树
        postThreadedNodes(node.getRight());

        //线索化当前节点
        //先处理当前节点的前驱节点
        if (node.getLeft() == null){
            node.setLeft(pre3);
            node.setLeftType(1);
        }

        //再处理后继结点(这步执行的时候node不是上面的节点,而是它的下一个)
        if (pre3 != null && pre3.getRight() == null){
            pre3.setRight(node);
            pre3.setRightType(1);
        }
        //将node(当前节点)赋给 pre3引用, 便于返回上层调用时给当前节点right赋值
        pre3 = node;
    }

///

    //前序遍历
    public void PreOrder(){
        if (this.root != null){
            this.root.PreOrder();
        }else {
            System.out.println("二叉树为空, 无法遍历");
        }
    }

    //中序遍历
    public void infixOrder(){
        if (this.root != null){
            this.root.infixOrder();
        }else {
            System.out.println("二叉树为空, 无法遍历");
        }
    }

    //后序遍历
    public void postOrder(){
        if (this.root != null){
            this.root.postOrder();
        }else {
            System.out.println("二叉树为空, 无法遍历");
        }
    }

    //前序遍历查找
    public HeroNode preOrderSearch(int no){
        if (root != null){
            return root.preOrderSearch(no);
        }else {
            return null;
        }
    }

    //中序遍历查找
    public HeroNode infixOrderSearch(int no){
        if (root != null){
            return root.infixOrderSearch(no);
        }else {
            return null;
        }
    }

    //后序遍历查找
    public HeroNode postOrderSearch(int no){
        if (root != null){
            return root.postOrderSearch(no);
        }else {
            return null;
        }
    }

    //删除节点
    public void delNode(int no){
        if (root != null){
            //这里立即判断是不是只有一个root节点,或者root是不是就是要删除的节点
            if (root.getNo() == no){
                root = null;
            }else {
                //递归删除
                root.delNode(no);
            }

        }else {
            System.out.println("空树!! 不能删除~");
        }
    }

}


//创建HeroNode
class HeroNode{
    private int no;
    private String name;
    private HeroNode left;//默认null
    private HeroNode right;//默认null

    //说明
    //1、如果leftType == 0 表示指向的是左子树, 如果 1 则表示指向前驱节点
    //1、如果rightType == 0 表示指向的是右子树, 如果 1 则表示指向后继节点
    private int leftType;
    private int rightType;

    public int getLeftType() {
        return leftType;
    }

    public void setLeftType(int leftType) {
        this.leftType = leftType;
    }

    public int getRightType() {
        return rightType;
    }

    public void setRightType(int rightType) {
        this.rightType = rightType;
    }

    public HeroNode(int no, String name) {
        this.no = no;
        this.name = name;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public HeroNode getLeft() {
        return left;
    }

    public void setLeft(HeroNode left) {
        this.left = left;
    }

    public HeroNode getRight() {
        return right;
    }

    public void setRight(HeroNode right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                '}';
    }

    //编写前序遍历的方法
    public  void  PreOrder(){
        //先输出父节点
        System.out.println(this);
        //递归向左子树前序遍历
        if (this.left != null){
            this.left.PreOrder();
        }
        //递归向右子树前序遍历
        if (this.right != null){
            this.right.PreOrder();
        }
    }

    //中序遍历
    public  void  infixOrder(){
        //递归向左子树前序遍历
        if (this.left != null){
            this.left.infixOrder();
        }
        //输出父节点
        System.out.println(this);
        //递归向右子树前序遍历
        if (this.right != null){
            this.right.infixOrder();
        }
    }

    public void postOrder(){
        //递归向左子树前序遍历
        if (this.left != null){
            this.left.postOrder();
        }
        //递归向右子树前序遍历
        if (this.right != null){
            this.right.postOrder();
        }
        //输出父节点
        System.out.println(this);
    }

    //前序遍历查找
    public HeroNode preOrderSearch(int no){
        System.out.println("进入前序遍历查找");
        /*
        要查看查找了几次,得在判断当前节点的上面,
        因为在判断左右子树的上面的话,很多次都只是判断左右有没有节点,并不是在查找
        并且要判断找没找到最终的还是这一步,即便是左递归或者右递归,每个节点都是通过该句来判断是否为目标节点
        (或者说这就是跳出递归的出口)
         */
        //比较当前节点是不是
        if (this.no == no){
            return this;
        }
        //这个引用是为了接收每次递归的结果(包括要查找的那个)
        HeroNode resNode = null;
        //1、判断当前节点的左子树是否为空, 如果不为空, 则递归前序查找
        //2、如果左递归前序查找,找到节点,则返回
        if (this.left != null){
            //注意: 要把以左子树为根节点遍历的结果赋给resNode
            resNode = this.left.preOrderSearch(no);
        }
        //如果resNode不为空
        if (resNode != null){//说明我们的左子树找到了
            return resNode;
        }
        //1、左递归前序查找, 找到节点, 则返回, 否则继续判断,
        //2、当前节点的右节点是否为空, 如果不空, 则继续向右递归前序查找
        if (this.right != null){
            resNode = this.right.preOrderSearch(no);
        }
        return resNode;
    }

    //中序遍历查找
    public HeroNode infixOrderSearch(int no){
        //判断当前节点的左子树是否为空, 如果不为空, 则递归中序查找
        HeroNode resNode = null;
        if (this.left != null){
            resNode = this.left.infixOrderSearch(no);
        }
        if (resNode != null){
            return resNode;
        }
        System.out.println("进入中序遍历查找");
        //如果做递归找到,则返回,如果没有就和当前节点比较, 如果是就返回当前节点
        if (this.no == no){
            return this;
        }
        //否则继续进行右递归的中序查找
        if (this.right != null){
            resNode = this.right.infixOrderSearch(no);
        }
        return resNode;
    }

    //后序遍历查找
    public HeroNode postOrderSearch(int no){
        //判断当前节点的左子树是否为空, 如果不为空, 则递归后序查找
        HeroNode resNode = null;
        if (this.left != null){
            resNode = this.left.postOrderSearch(no);
        }
        if (resNode != null){//说明我们的左子树找到了
            return resNode;
        }
        //如果左子树没有找到, 则向右子树递归进行后序遍历查找
        if (this.right != null){
            resNode = this.right.postOrderSearch(no);
        }
        if (resNode != null){
            return resNode;
        }
        //如果左右子树都没有找到, 就比较当前节点是不是
        System.out.println("进入后序遍历查找");
        if (this.no == no){
            return this;
        }
        return resNode;
    }

    //递归删除节点
    //1.如果删除的节点是叶子节点, 则删除该节点
    //2.如果删除的节点是非叶子节点,则删除该子树(注:是子树)
    public void delNode(int no){
        //如果当前节点的左子节点不为空, 并且左子节点 就是要删除的节点, 就将this.left = null; 并且就返回(结束递归删除)
        if (this.left != null && this.left.no == no){
            this.left = null;
            return;
        }
        //如果当前节点的右子节点不为空, 并且右子节点 就是要删除的节点, 就将this.right = null; 并且就返回(结束递归删除)
        if (this.right != null && this.right.no == no){
            this.right = null;
            return;
        }
        //我们就需要向左子树进行递归删除
        if (this.left != null){
            this.left.delNode(no);
        }
        //则应当向右子树进行递归删除
        if (this.right != null){
            this.right.delNode(no);
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值