线索化二叉树
问题引入
将数列 {1, 3, 6, 8, 10, 14 } 构建成一颗二叉树. n+1=7
问题分析:
- 当我们对上面的二叉树进行中序遍历时,数列为 {8, 3, 10, 1, 6, 14 }
- 但是 6, 8, 10, 14 这几个节点的 左右指针,并没有完全的利用上.
- 如果我们希望充分的利用 各个节点的左右指针, 让各个节点可以指向自己的前后节点,怎么办?
- 解决方案- 线索二叉树
基本介绍
-
n 个结点的二叉链表中含有 n+1 【公式 2n-(n-1)=n+1】 个空指针域。利用二叉链表中的空指针域,存放指向
该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索") -
这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质
的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种 -
一个结点的前一个结点,称为前驱结点
-
一个结点的后一个结点,称为后继结点
-
总结: 其实就是把二叉树中的叶子节点(或者只有一个孩子的节点)的 left或者right指针 分别 指向它的前驱和后继节点
应用实例
应用案例说明:将下面的二叉树,进行中序线索二叉树。中序遍历的数列为 {8, 3, 10, 1, 14, 6}
思路分析: 中序遍历的结果:{8, 3, 10, 1, 14, 6}
说明: 当线索化二叉树后,Node 节点的 属性 left 和 right ,有如下情况:
- left 指向的是左子树,也可能是指向的前驱节点. 比如 ① 节点 left 指向的左子树, 而 ⑩ 节点的 left 指向的
就是前驱节点. - right 指向的是右子树,也可能是指向后继节点,比如 ① 节点 right 指向的是右子树,而⑩ 节点的 right 指向
的是后继节点.
代码实现(前中后序都有)
说明: 要关注的是带有线索化字样的方法, 前和后是自己写的不一定正确, 但我感觉是对的。! 我感觉自己的前后序遍历写的有点问题,虽然结果是对的。。。
public class ThreadedBinaryTreeDemo {
public static void main(String[] args) {
HeroNode root = new HeroNode(1, "tom");
HeroNode node2 = new HeroNode(3, "jack");
HeroNode node3 = new HeroNode(6, "smith");
HeroNode node4 = new HeroNode(8, "mary");
HeroNode node5 = new HeroNode(10, "king");
HeroNode node6 = new HeroNode(14, "dim");
HeroNode node7 = new HeroNode(16,"zhuge");
//二叉树,后面我们要递归创建, 现在简单处理使用手动创建
root.setLeft(node2);
root.setRight(node3);
node2.setLeft(node4);
node2.setRight(node5);
node3.setLeft(node6);
node3.setRight(node7);
//测试中序线索化
ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
// threadedBinaryTree.setRoot(root);
// threadedBinaryTree.threadedNodes();
//
// //测试: 以 10 号节点测试
// HeroNode leftNode = node5.getLeft();
// HeroNode rightNode = node5.getRight();
// System.out.println("10 号结点的前驱结点是 =" + leftNode); //3
// System.out.println("10 号结点的后继结点是=" + rightNode); //1
//
// //当线索化二叉树后,不能在使用原来的遍历方法
// //threadedBinaryTree.infixOrder();
// System.out.println("使用中序线索化的方式遍历 线索化二叉树");
// threadedBinaryTree.threadedList();// 8 3 10 1 14 6 16
//测试前序线索化
threadedBinaryTree.setRoot(root);
threadedBinaryTree.preThreadedNodes();
//测试: 以 10 号节点测试
HeroNode leftNode = node5.getLeft();
HeroNode rightNode = node5.getRight();
System.out.println("10 号结点的前驱结点是=" + leftNode); //8
System.out.println("10 号结点的后继结点是=" + rightNode); //6
/*
注: 线索化二叉树对于非叶子节点来说, 它的left,right就是左右孩子
所以测试的时候我们要测叶子节点或者只有一个孩子的节点(我拿3节点测的,测出8 和 10 ,我还以为写错了,原来是对的)
*/
//测试前序线索化遍历
System.out.println("使用前序线索化的方式遍历 线索化二叉树");
threadedBinaryTree.preThreadedList();// 1 3 8 10 6 14 16
//测试后序线索化
// threadedBinaryTree.setRoot(root);
// threadedBinaryTree.postThreadedNodes();
//
// //测试: 以 10 号节点(值为10)测试
// HeroNode leftNode = node5.getLeft();
// HeroNode rightNode = node5.getRight();
// System.out.println("10 号结点的前驱结点是=" + leftNode); //8
// System.out.println("10 号结点的后继结点是=" + rightNode); //3
// /*
// 注: 线索化二叉树对于非叶子节点来说, 它的left,right就是左右孩子
// 所以测试的时候我们要测叶子节点或者只有一个孩子的节点(我拿3节点测的,测出8 和 10 ,我还以为写错了,原来是对的)
// */
//
// //测试后序线索化遍历
// System.out.println("使用后序线索化的方式遍历 线索化二叉树");
// threadedBinaryTree.postThreadedList();// 8 10 3 14 16 6 1
}
}
//定义ThreadedBinaryTree 实现了线索化功能的二叉树
class ThreadedBinaryTree {
private HeroNode root;
//为了实现线索化, 需要创建要给指向当前节点的前驱节点的指针
//在递归进行线索化时, pre 总是保留前一个节点
private HeroNode pre1 = null;
private HeroNode pre2 = null;
private HeroNode pre3 = null;
public void setRoot(HeroNode root) {
this.root = root;
}
//重载一下threadedNodes
public void threadedNodes(){
this.threadedNodes(root);
}
//重载一下preThreadedNodes
public void preThreadedNodes(){
this.preThreadedNodes(root);
}
//重载一下postThreadedNodes
public void postThreadedNodes(){
this.postThreadedNodes(root);
}
//前序遍历线索化二叉树的方法
public void preThreadedList(){
HeroNode node = root;
//当前序遍历到当前节点时就直接先输出
System.out.println(node);
while (node.getLeftType() != 1) {
node = node.getLeft();
System.out.println(node);
}
//跳出while循环时,左子树全部打印完了
//如果指向的节点的右指针right指向的是后继节点, 就一直输出
while (node.getRightType() == 1) {
node = node.getRight();
System.out.println(node);
}
//现在来到右子树的根节点
node = node.getLeft();
System.out.println(node);
while (node.getLeftType() != 1){
node = node.getLeft();
System.out.println(node);
}
while (node.getRightType() == 1) {
node = node.getRight();
System.out.println(node);
}
}
//中序遍历线索化二叉树的方法
public void threadedList(){
//定义一个变量, 存储当前遍历的节点, 从root开始
HeroNode node = root;
while (node != null){
//循环的找到leftType == 1的节点, 第一个找到就是8 节点
//后面随着遍历而变化, 因为当leftType == 1时, 说明该节点是按照线索化处理后的有效节点
while (node.getLeftType() == 0){
node = node.getLeft();
}//当循环结束时, node就指向中序线索化的第一个节点
//输出node最终指向的节点
System.out.println(node);
//如果指向的节点的右指针right指向的是后继节点, 就一直输出(左斜树的情况)
while (node.getRightType() == 1){
node = node.getRight();
System.out.println(node);
}
//当跳出while循环时,node指向的是有右孩子的节点(该节点的值已经输出了)
//所以将node替换为它的右孩子
node = node.getRight();
}
}
//后序遍历线索化二叉树的方法
public void postThreadedList() {
//定义一个变量, 存储当前遍历的节点, 从root开始
HeroNode node = root;
//当遍历到根节点,判断条件为right指向的不是后继节点
//我不会把右 半段放到while循环里, 所以代码冗余了一些。。
//先找到第一个要输出的点(最左边的那个)
while (node.getLeftType() == 0) {
node = node.getLeft();
}
/*
注: 后序遍历线索化跟中序也不完全一样, 当最左边的子树只有右孩子的时侯,
跳出while循环的时候指向的是父节点, 但此时我们不能像中序那样直接输出,
因为后序遍历是(左右根),当没有左的时候输出右(中序在没有左的时候正好输出根)
所以我们要判断父节点有没有左孩子,有的话就直接输出,
没有的话又分两种情况(都包含在了下面的判断里)
1、有右孩子就输出右孩子
2、没有右孩子
*/
if (node.getRight().getLeft() == null) {
System.out.println(node.getRight());
} else {
System.out.println(node);
}
while (node.getRightType() == 1) {
node = node.getRight();
System.out.println(node);
}
/*
注: 这里就不能直接向中序那样指向右孩子,
因为跳出while循环后指向的是父节点,而父节点是有右孩子的(它的right不指向后继节点)
所以我们要手动调到右半边打印
*/
node = root.getRight();
while (node.getLeftType() == 0) {
node = node.getLeft();
}
if (node.getRight().getLeft() == null) {
System.out.println(node.getRight());
} else {
System.out.println(node);
}
while (node.getRightType() == 1) {
node = node.getRight();
System.out.println(node);
}
System.out.println(root);
}
//编写对二叉树进行前序线索化的方法
public void preThreadedNodes(HeroNode node){
//如果node==null, 不能线索化
if (node == null){
return;
}
//(1)先对当前节点进行线索化
//先处理当前节点的前驱节点
if (node.getLeft() == null){
node.setLeft(pre2);
node.setLeftType(1);
}
//再处理后继节点
if (pre2 != null && pre2.getRight() == null){
pre2.setRight(node);
pre2.setRightType(1);
}
//在处理完当前节点时,就要把node赋给pre2引用
pre2 = node;
//(2)再对左子树进行线索化
if (node.getLeft() != null && node.getLeftType() != 1) {
preThreadedNodes(node.getLeft());
}
/*
如果这样写的话(没有if)到8的时候它的左边(getleft()已经是3节点了,所以会无限循环,直到栈溢出报错)
*/
//(3)最后对右子树进行线索化
if (node.getRight() != null && node.getRightType() != 1) {
preThreadedNodes(node.getRight());
}
}
//编写对二叉树进行中序线索化的方法
/**
*
* @param node 就是当前需要线索化的节点
*/
public void threadedNodes(HeroNode node){
//如果node==null, 不能线索化
if (node == null){
return;
}
//(1)先线索化左子树
threadedNodes(node.getLeft());
//(2)线索化当前节点(重要,有难度)
//处理当前节点的前驱节点
//以8节点来理解
//8节点的.left = null , 8节点的.leftType = 1
//这里判断当前节点的left是否为空, 其实是想确定当前节点是否为叶子节点,是的话就可以将left指向前驱节点了
if (node.getLeft() == null){
node.setLeft(pre1);
node.setLeftType(1);
}
//再处理后继节点(这个if语句其实是在下一个节点调用方法时执行的)
/*
还是以8 节点为例
当我们处理完 8节点的前驱节点时,我们无法直接处理8 节点的后继节点,因为我们没有引用能够找到它
因此当我们返回到3 节点的那个调用里时,pre = node;已经把8 节点放到了pre里,
并且此时我们的node就是指向8 节点的后继节点(3),这样就很好操作了。
pre.getRight() == null一句就是为了判断上一个节点没有右孩子
*/
if (pre1 != null && pre1.getRight() == null){
pre1.setRight(node);
pre1.setRightType(1);
}
//每处理一个节点后, 让当前节点是下一个节点的前驱节点
pre1 = node;
//(3)线索化右子树
threadedNodes(node.getRight());
}
//编写对二叉树进行后序线索化的方法
public void postThreadedNodes(HeroNode node){
if (node == null){
return;
}
/*
注: 只有在前序线索化的时候,要在线索化左右子树之前进行 left或right 是否已经为1 的判断
因为 前序线索化时 , 是先把当前节点的 left或right 给赋值了,再进行的左右子树的线索化,
如果不进行判断,就会在返回上层递归时进入死循环(因为那时pre指向的节点不为空,所以就不能返回,而是继续调用方法)
*/
//(1)先线索化左子树
postThreadedNodes(node.getLeft());
//(2)在线索化右子树
postThreadedNodes(node.getRight());
//线索化当前节点
//先处理当前节点的前驱节点
if (node.getLeft() == null){
node.setLeft(pre3);
node.setLeftType(1);
}
//再处理后继结点(这步执行的时候node不是上面的节点,而是它的下一个)
if (pre3 != null && pre3.getRight() == null){
pre3.setRight(node);
pre3.setRightType(1);
}
//将node(当前节点)赋给 pre3引用, 便于返回上层调用时给当前节点right赋值
pre3 = node;
}
///
//前序遍历
public void PreOrder(){
if (this.root != null){
this.root.PreOrder();
}else {
System.out.println("二叉树为空, 无法遍历");
}
}
//中序遍历
public void infixOrder(){
if (this.root != null){
this.root.infixOrder();
}else {
System.out.println("二叉树为空, 无法遍历");
}
}
//后序遍历
public void postOrder(){
if (this.root != null){
this.root.postOrder();
}else {
System.out.println("二叉树为空, 无法遍历");
}
}
//前序遍历查找
public HeroNode preOrderSearch(int no){
if (root != null){
return root.preOrderSearch(no);
}else {
return null;
}
}
//中序遍历查找
public HeroNode infixOrderSearch(int no){
if (root != null){
return root.infixOrderSearch(no);
}else {
return null;
}
}
//后序遍历查找
public HeroNode postOrderSearch(int no){
if (root != null){
return root.postOrderSearch(no);
}else {
return null;
}
}
//删除节点
public void delNode(int no){
if (root != null){
//这里立即判断是不是只有一个root节点,或者root是不是就是要删除的节点
if (root.getNo() == no){
root = null;
}else {
//递归删除
root.delNode(no);
}
}else {
System.out.println("空树!! 不能删除~");
}
}
}
//创建HeroNode
class HeroNode{
private int no;
private String name;
private HeroNode left;//默认null
private HeroNode right;//默认null
//说明
//1、如果leftType == 0 表示指向的是左子树, 如果 1 则表示指向前驱节点
//1、如果rightType == 0 表示指向的是右子树, 如果 1 则表示指向后继节点
private int leftType;
private int rightType;
public int getLeftType() {
return leftType;
}
public void setLeftType(int leftType) {
this.leftType = leftType;
}
public int getRightType() {
return rightType;
}
public void setRightType(int rightType) {
this.rightType = rightType;
}
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
//编写前序遍历的方法
public void PreOrder(){
//先输出父节点
System.out.println(this);
//递归向左子树前序遍历
if (this.left != null){
this.left.PreOrder();
}
//递归向右子树前序遍历
if (this.right != null){
this.right.PreOrder();
}
}
//中序遍历
public void infixOrder(){
//递归向左子树前序遍历
if (this.left != null){
this.left.infixOrder();
}
//输出父节点
System.out.println(this);
//递归向右子树前序遍历
if (this.right != null){
this.right.infixOrder();
}
}
public void postOrder(){
//递归向左子树前序遍历
if (this.left != null){
this.left.postOrder();
}
//递归向右子树前序遍历
if (this.right != null){
this.right.postOrder();
}
//输出父节点
System.out.println(this);
}
//前序遍历查找
public HeroNode preOrderSearch(int no){
System.out.println("进入前序遍历查找");
/*
要查看查找了几次,得在判断当前节点的上面,
因为在判断左右子树的上面的话,很多次都只是判断左右有没有节点,并不是在查找
并且要判断找没找到最终的还是这一步,即便是左递归或者右递归,每个节点都是通过该句来判断是否为目标节点
(或者说这就是跳出递归的出口)
*/
//比较当前节点是不是
if (this.no == no){
return this;
}
//这个引用是为了接收每次递归的结果(包括要查找的那个)
HeroNode resNode = null;
//1、判断当前节点的左子树是否为空, 如果不为空, 则递归前序查找
//2、如果左递归前序查找,找到节点,则返回
if (this.left != null){
//注意: 要把以左子树为根节点遍历的结果赋给resNode
resNode = this.left.preOrderSearch(no);
}
//如果resNode不为空
if (resNode != null){//说明我们的左子树找到了
return resNode;
}
//1、左递归前序查找, 找到节点, 则返回, 否则继续判断,
//2、当前节点的右节点是否为空, 如果不空, 则继续向右递归前序查找
if (this.right != null){
resNode = this.right.preOrderSearch(no);
}
return resNode;
}
//中序遍历查找
public HeroNode infixOrderSearch(int no){
//判断当前节点的左子树是否为空, 如果不为空, 则递归中序查找
HeroNode resNode = null;
if (this.left != null){
resNode = this.left.infixOrderSearch(no);
}
if (resNode != null){
return resNode;
}
System.out.println("进入中序遍历查找");
//如果做递归找到,则返回,如果没有就和当前节点比较, 如果是就返回当前节点
if (this.no == no){
return this;
}
//否则继续进行右递归的中序查找
if (this.right != null){
resNode = this.right.infixOrderSearch(no);
}
return resNode;
}
//后序遍历查找
public HeroNode postOrderSearch(int no){
//判断当前节点的左子树是否为空, 如果不为空, 则递归后序查找
HeroNode resNode = null;
if (this.left != null){
resNode = this.left.postOrderSearch(no);
}
if (resNode != null){//说明我们的左子树找到了
return resNode;
}
//如果左子树没有找到, 则向右子树递归进行后序遍历查找
if (this.right != null){
resNode = this.right.postOrderSearch(no);
}
if (resNode != null){
return resNode;
}
//如果左右子树都没有找到, 就比较当前节点是不是
System.out.println("进入后序遍历查找");
if (this.no == no){
return this;
}
return resNode;
}
//递归删除节点
//1.如果删除的节点是叶子节点, 则删除该节点
//2.如果删除的节点是非叶子节点,则删除该子树(注:是子树)
public void delNode(int no){
//如果当前节点的左子节点不为空, 并且左子节点 就是要删除的节点, 就将this.left = null; 并且就返回(结束递归删除)
if (this.left != null && this.left.no == no){
this.left = null;
return;
}
//如果当前节点的右子节点不为空, 并且右子节点 就是要删除的节点, 就将this.right = null; 并且就返回(结束递归删除)
if (this.right != null && this.right.no == no){
this.right = null;
return;
}
//我们就需要向左子树进行递归删除
if (this.left != null){
this.left.delNode(no);
}
//则应当向右子树进行递归删除
if (this.right != null){
this.right.delNode(no);
}
}
}