概率论与数理统计——第七周周三-边缘分布律及边缘密度

边缘分布律及边缘密度

引例

在这里插入图片描述

1.边缘分布律

在这里插入图片描述

以二维表的形式给出:

在这里插入图片描述

例1:

设甲、乙两人各进行两次射击,他们每次的命中率分别为0.8和0.6。甲先射击,且甲全部命中时乙的命中率下降
10%,甲全部未命中时乙的命中率上升20%,甲命中1次时 乙不受影响。令X,Y分别表示甲、乙的命中次数, 分别求(X,Y )关于X,Y的边缘分布律
在这里插入图片描述

2 . 边缘密度函数

在这里插入图片描述

例 2 :

在这里插入图片描述

求解过程 (它的联合密度应该为e 的 -y 次方。)

在这里插入图片描述
在这里插入图片描述

小练习题:

例1:

在这里插入图片描述

例2:

在这里插入图片描述

例3:

在这里插入图片描述

图解:

二维随机变量的联合密度函数含有丰富的信息,主要有三个方面:
(1)单变量的密度函数,即边缘密度函数;
(2)利用边缘密度函数的信息去判别两个变量之间的相依关系,且利用相关系数去判断它们的相依程度;
(3)当一个变量固定不变时,另一个变量如何变化,具有什么样的密度,这就是条件密度。

因此,确定边缘密度尤为重要。利用二维随机变量的联合密度函数求取边缘密度,在视频和习题中我们已经进行了大量的推演和练习。下面我们将利用图形可视化加深对边缘密度的理解。
在这里插入图片描述
在这里插入图片描述

clear;clc;
rou=0.3;
[x,y]=meshgrid(-3:0.05:3);
z=(1/(2*pi*sqrt(1-rou^2)))*exp((x.^2+y.^2-2*rou*x.*y)/(-2*(1-rou^2)));
ii=find(x<-1);
z(ii)=zeros(size(ii));
surf(x,y,z)  %画曲面(带切面)
hold on 
iii=find(x==-1);
plot3(x(iii),y(iii),z(iii),'--w','LineWidth',2)  %画截痕
hold on
iiii=find(x==-1.2);
plot3(x(iiii),y(iiii),z(iiii),'--w','LineWidth',2)  %显示截痕所围截面
hold on
text('Interpreter','latex',...
 'String','$$f_X(c)=\int_{-\infty}^{+\infty}{f(c,y)dy}$$',...
 'Position',[-3 1.5 0.17],...
 'FontSize',24)
xlabel('X轴');
ylabel('Y轴');
zlabel('Z轴');
view(3)
%%% 图2的matlab 代码

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值