题目描述
Ignatius最近遇到一个难题,老师交给他很多单词(只有小写字母组成,不会有重复的单词出现),现在老师要他统计出以某个字符串为前缀的单词数量(单词本身也是自己的前缀).
Input
输入数据的第一部分是一张单词表,每行一个单词,单词的长度不超过10,它们代表的是老师交给Ignatius统计的单词,一个空行代表单词表的结束.第二部分是一连串的提问,每行一个提问,每个提问都是一个字符串.
注意:本题只有一组测试数据,处理到文件结束.
Output
对于每个提问,给出以该字符串为前缀的单词的数量.
Sample Input
banana band bee absolute acm ba b band abc
Sample Output
2 3 1 0
这道题是我的一个学长讲给我们的,我觉得题目比较有代表意义,并且用到的方法也很好,所以就写这篇博客,再分析一下。本题用到的主要方法是字典树,相信网上有很多好的文章也解释的很详细了,但我做这道题的心得对于任何一个问题都有他的方法,或许我们不知道这一题他考的是什么内容,用什么样的的算法可以解决。这主要原因是我们刷题刷的太少了,遇见的少了,碰见一道题不知道用什么样的方法去做,这是很恐怖的一件事,所以这就激励我们努力地去刷题,没有什么是一成不变的,只要我们肯努力,相信有一天我们也会改变,也会有出彩的那一天,或许就在不久的将来。
这道题如果就用平常的解法的话,你肯定会想到用暴搜,但无疑这样的复杂度太高了,必然会超限。所以我们就想有没有什么样的方法可以降低时间复杂度呢!这是你可能就想到了字典树。字典树可以类似是一棵大树,他有很多的分支,每一个分支下面又包含了许多小的分支,这样他就把复杂的问题简单化了,每一个分支都有标记点,很容易找到答案。如果有新的内容要加入,他会在适当的位置把它添加上,这样前面很多步骤就优化掉了,从而问题的已解决。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
const int maxn=1e6+5;
typedef long long ll;
int tree[maxn][26];
int dis[maxn];
int sz=0;
char a[100];
int init(char *x)
{
int u=0;
int h=strlen(x);
for(int i=0;i<h;i++)
{
int pos=x[i]-'a';
if(tree[u][pos]==0)
tree[u][pos]=++sz;
u=tree[u][pos];
dis[u]++;
}
}
int Find(char *x)
{
int u=0;
int h=strlen(x);
for(int i=0;i<h;i++)
{
int pos=x[i]-'a';
if(tree[u][pos]==0)
return 0;
u=tree[u][pos];
}
return dis[u];
}
int main()
{
while(gets(a))
{
if(strlen(a)==0) break;
init(a);
}
while(~scanf("%s",a))
{
printf("%d\n",Find(a));
}
return 0;
}