【Transformer多变量时序多步预测】Transformer多变量时间序列多步预测,多变量输入模型。matlab代码,2023b及其以上。1.多变量时间序列多步预测数据集(带数据集),采用前

【Transformer多变量时序多步预测】Transformer多变量时间序列多步预测,多变量输入模型。matlab代码,2023b及其以上。

1.多变量时间序列多步预测数据集(带数据集),采用前48个时刻的特征和负荷数据来预测未来48个时刻的负荷数据。

2. 预测多步步长,这里是预测未来2天,一天24个样本点的发电功率。滑动窗口是24,也就是1天的数据。意思就是用1~2天的数据预测第3-4天(24个小时)的发电功率。

评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。参数可方便更改,程序和excel数据放在一个文件夹,注释明细。

%% 优化算法优化前,构建优化前的TCN模型

numChannels = or_dim;

maxPosition = 256*2;

numHeads = 4;

numKeyChannels = numHeads*32;

layers = [

sequenceInputLayer(numChannels,Name="input")

positionEmbeddingLayer(numChannels,maxPosition,Name="pos-emb");

additionLayer(2, Name="add")

selfAttentionLayer(numHeads,numKeyChannels,'AttentionMask','causal')

selfAttentionLayer(numHeads,numKeyChannels)

indexing1dLayer("last")

fullyConnectedLayer(n_out)

regressionLayer];

lgraph = layerGraph(layers);

lgraph = connectLayers(lgraph,"input","add/in2");

智能算法及其模型预测

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是一个使用Transformer实现多变量多步时间序列预测代码示例: ```python import torch import torch.nn as nn import numpy as np class MultiVariateTransformer(nn.Module): def __init__(self, input_dim, output_dim, n_head, n_layers, dropout): super(MultiVariateTransformer, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.n_head = n_head self.n_layers = n_layers self.dropout = dropout self.encoder_layer = nn.TransformerEncoderLayer(d_model=input_dim, nhead=n_head, dropout=dropout) self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=n_layers) self.decoder_layer = nn.TransformerDecoderLayer(d_model=output_dim, nhead=n_head, dropout=dropout) self.transformer_decoder = nn.TransformerDecoder(self.decoder_layer, num_layers=n_layers) self.fc = nn.Linear(input_dim, output_dim) def forward(self, input_seq): # input_seq: (seq_len, batch_size, input_dim) input_seq = input_seq.permute(1, 0, 2) # (batch_size, seq_len, input_dim) encoder_output = self.transformer_encoder(input_seq) # (batch_size, seq_len, input_dim) decoder_input = torch.zeros((input_seq.shape[0], self.output_dim)).to(input_seq.device) # (batch_size, output_dim) decoder_input = decoder_input.unsqueeze(1).repeat(1, input_seq.shape[1], 1) # (batch_size, seq_len, output_dim) for i in range(decoder_input.shape[1]): decoder_output = self.transformer_decoder(decoder_input[:, :i+1, :], encoder_output) # (batch_size, i+1, output_dim) decoder_input[:, i, :] = self.fc(decoder_output[:, i, :]) # (batch_size, output_dim) return decoder_input.permute(1, 0, 2) # (seq_len, batch_size, output_dim) ``` 使用示例: ```python # 准备数据 train_input_seq = np.random.rand(100, 64, 5) # (seq_len, batch_size, input_dim) train_target_seq = np.random.rand(10, 64, 2) # (seq_len, batch_size, output_dim) train_input_seq = torch.tensor(train_input_seq).float() train_target_seq = torch.tensor(train_target_seq).float() # 初始化模型 model = MultiVariateTransformer(input_dim=5, output_dim=2, n_head=8, n_layers=6, dropout=0.1) # 训练模型 optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) criterion = nn.MSELoss() for epoch in range(100): optimizer.zero_grad() pred_target_seq = model(train_input_seq) loss = criterion(pred_target_seq[-10:, :, :], train_target_seq) loss.backward() optimizer.step() print("Epoch:", epoch, "loss:", loss.item()) # 预测结果 test_input_seq = np.random.rand(100, 1, 5) test_input_seq = torch.tensor(test_input_seq).float() with torch.no_grad(): pred_target_seq = model(test_input_seq) print(pred_target_seq.shape) # (seq_len, batch_size, output_dim) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值