- 博客(11)
- 收藏
- 关注
原创 code-反转字符串
后查阅资料发现,这样的写法仅是在swap时生成的2个临时变量m,n的值进行交换,并不改变实际字符串的数值,应该写成指针的形式或者引用的写法。题目:编写一个函数,其作用是将输入的字符串反转过来。不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。输入:["H","a","n","n","a","h"]输出:["h","a","n","n","a","H"]输入:["h","e","l","l","o"]输出:["o","l","l","e","h"]
2024-10-12 20:50:10
298
原创 C++-面向对象编程-类and对象(2)
友元也可以是一个类,该类被称为友元类,在这种情况下,整个类及其所有成员都是友元。对内联函数进行任何修改,都需要重新编译函数的所有客户端,因为编译器需要重新更换一次所有的代码,否则将会继续使用旧的函数。如果一个函数是内联的,那么在编译时,编译器会把该函数的代码副本放置在每个调用该函数的地方。:是一种特殊的构造函数,创建对象时,使用同一类中之前创建的对象来初始化新创建的对象。如果要声明函数为一个类的友元,需要在类定义中该函数原型前使用关键字。在类定义中的定义的函数都是内联函数,即使没有使用。
2024-09-26 16:42:49
344
原创 C++——面向对象编程-类(1)
关键字public确定类成员的访问属性和访问级别,还有private和protected两种(在继承中是公开的(public)、私有的(private)还是受保护的(protected))。因为之前python用的比较多,python中类也用的比较频繁,那么c++中的类与python中的类有什么区别呢?(牛客)析构函数的名称与类的名称是完全相同的,只是在前面加了个波浪号(~)作为前缀,2.访问控制:c++有公开的(public)、私有的(private)还是受保护的(protected)(
2024-09-26 16:19:17
446
原创 六、生成对抗网络(GAN)手写数字的识别
对于训练过程中的部分,先归一化,定义真假标签,然后开始D和G的交替训练。先是对于D的训练,一个真实的图片和一个噪声产生的图片,分别用来训练鉴别器的损失d_loss_real和d_loss_fake,最后计算总的loss,取前面两者均值。然后训练D和G的组合模型(参数组合,此时的鉴别器是False,不工作的),用valid和noise来训练,目标是使生成的图片被鉴别器标记为有效。直到GAN的发明,生成式模型才逐渐蓬勃发展,其他的生成式模型有Diffusion Model,VAE(变分自编码器)等。
2023-11-22 11:26:31
429
原创 五、RNN实现股票预测
先登录注册Tushare,然后获取token即可(无tushare的pip一下即可)。时间从17年1月到23年11月,一共1659行数据。效果还可以,这就去预测股票赚钱去喽!加个分割线查看归一化的数据和还原后的数据。4.模型的构建、编译及训练。1.导包,设置gpu。
2023-11-15 17:02:02
841
2
原创 四、VGG16识别花朵
由于模型参数大(dropout后还有8千万),复杂,跑起来比较久。代码和之前一样,就是在model这里改了下。感觉很难用到小型化的设备中啊,懒的搞,溜~我就直接用之前的花朵图的数据集了。记得前面要进行标准化哦。
2023-11-08 09:42:19
167
1
原创 关于之前cifar和花图片模型的一些改进
还是和原来一样,模型的参数过大(对于大参数而言,训练集肯定能更快的上升到一个较高的acc水平),加dropout也无济于事,不像作者说的那样可以解决。acc大概是75%左右,相比之前提升了3%,还是有一点用处的。在网络层加入Dropout(0.5),防止过拟合。准确率在75%左右,相比之前提升了5%。从曲线看还有一定的上升趋势。1.cifar数据集识别。测试集结果相差不大。
2023-11-06 20:38:32
88
1
原创 三、CNN花朵识别
题外:设置随机种子可以确保可重复性,因为伪随机数生成器(PRNG)在生成随机数时实际上是根据种子值来确定的。如果你在不改变种子的情况下多次使用相同的PRNG,它将生成相同的序列,因此结果将是可重复的。我也感觉一个是训练集太少,一个是模型参数太大。使用glob获取指定路径下的所有jpg图片,后面p1尝试输出roses集中的一张图片。最后结果是在72%左右,提升了10%,但依然不理想。输出32张(一个batch),维度180*180*3的图片,标签32。搭建模型(前先进行归一化,不然训练的很差)
2023-11-06 17:13:49
1964
5
原创 cifar数据集下载到本地,python实现读取
好啦好啦,上次留下的小问题解决了。后面也许会尝试改进网络结构或者进行数据增强来提升测试集的acc,bye.我下载的位置:F:\daydayup\cifar-10\cifar-10-batches-py。这里,我选的是python版本的。
2023-11-02 10:54:02
3568
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人