什么是基数排序?图解对话交流让你一目了然,一起欢快的学习吧

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述假定20个随机整数的值如下:

9,3,5,4,9,1,2,7,8,1,3,6,5,3,4,0,10,9 ,7,9

如何给这些无序的随机整数排序呢?

非常简单,让我们遍历这个无序的随机数列,每一个整数按照其值对号入座,对应数组下标的元素进行加1操作。

比如第一个整数是9,那么数组下标为9的元素加1:
在这里插入图片描述第二个整数是3,那么数组下标为3的元素加1:
在这里插入图片描述继续遍历数列并修改数组…

最终,数列遍历完毕时,数组的状态如下:
在这里插入图片描述数组每一个下标位置的值,代表了数列中对应整数出现的次数。

有了这个“统计结果”,排序就很简单了。直接遍历数组,输出数组元素的下标值,元素的值是几,就输出几次:

0,1,1,2,3,3,3,4,4,5,5,6,7,7,8,9,9,9,9,10

显然,这个输出的数列已经是有序的了。
在这里插入图片描述

    public static int[] countSort(int[] array) {

       //1.得到数列的最大值

       int max = array[0];

       for(int i=1; i<array.length; i++){

           if(array[i] > max){

               max = array[i];

           }

       }

       //2.根据数列最大值确定统计数组的长度

       int[] countArray = new int[max+1];

       //3.遍历数列,填充统计数组

       for(int i=0; i<array.length; i++){

           countArray[array[i]]++;

       }

       //4.遍历统计数组,输出结果

       int index = 0;

       int[] sortedArray = new int[array.length];

       for(int i=0; i<countArray.length; i++){

           for(int j=0; j<countArray[i]; j++){

               sortedArray[index++] = i;

           }

       }

       return sortedArray;

    }


    public static void main(String[] args) {

       int[] array = new int[] {4,4,6,5,3,2,8,1,7,5,6,0,10};

       int[] sortedArray = countSort(array);

       System.out.println(Arrays.toString(sortedArray));

    }

这段代码在一开头补充了一个步骤,就是求得数列的最大整数值max。后面创建的统计数组countArray,长度就是max+1,以此保证数组的最后一个下标是max。
在这里插入图片描述

95,94,91,98,99,90,99,93,91,92

在这里插入图片描述
怎么解决这个问题呢?

很简单,我们不再以(输入数列的最大值+1)作为统计数组的长度,而是以(数列最大值和最小值的差+1)作为统计数组的长度。

同时,数列的最小值作为一个偏移量,用于统计数组的对号入座。

以刚才的数列为例,统计数组的长度为 99-90+1 = 10 ,偏移量等于数列的最小值 90 。

对于第一个整数95,对应的统计数组下标是 95-90 = 5,如图所示:

在这里插入图片描述什么意思呢?让我们看看下面的例子:
在这里插入图片描述给定一个学生的成绩表,要求按成绩从低到高排序,如果成绩相同,则遵循原表固有顺序。

那么,当我们填充统计数组以后,我们只知道有两个成绩并列95分的小伙伴,却不知道哪一个是小红,哪一个是小绿:
在这里插入图片描述下面的讲解会有一些烧脑,请大家扶稳坐好。我们仍然以刚才的学生成绩表为例,把之前的统计数组变形成下面的样子:

在这里插入图片描述这是如何变形的呢?统计数组从第二个元素开始,每一个元素都加上前面所有元素之和。

为什么要相加呢?初次看到的小伙伴可能会觉得莫名其妙。

因为原来的统计数组(未变形)里面存储的是各个元素的个数,那么向后叠加的目的就是为了计算元素排序后的最终位置(准确来说是最大的最终位置)。比如元素 90 的个数为1, 94个数也为 1,那么向后叠加后94对应的统计数组(变形后)为 2 ,那它就最终的位置就是第二。

变形后的统计数组(countArray)中的值就代表着原数列元素排序后最大的最终位置(在重复元素的情况下还会有其他相同元素在此位置之前)。比如下标是5的值为4,说明 95 排序后的位置最大就是第四。
在这里插入图片描述通过变形后的统计数组中的值对应排序后数组sortedArray的下标来控制最终的位置( 4 <—> sortedArray[ 4-1] );

那么另外一个95在哪?我们可以将accountArray[5] 里面的值减一(4-1),让它排在第三位。
在这里插入图片描述通过这样的递减,就可以将重复的元素全部安排妥当,先遇到小绿,就先安排小绿,再遇到小红,然后安排小红,这样小绿和小红排序前和排序后的次序也就可以相同了。

下来我们具体分析整个过程:

我们创建输出数组sortedArray,长度和输入数列一致。然后从后向前遍历输入数列:

第一步,我们遍历成绩表最后一行的小绿:

小绿是95分,我们找到countArray下标是5的元素,值是4,代表小绿的成绩排名位置在第4位。

同时,我们给countArray下标是5的元素值减1,从4变成3,,代表着下次再遇到95分的成绩时,最终排名是第3。

在这里插入图片描述第二步,我们遍历成绩表倒数第二行的小白:

小白是94分,我们找到countArray下标是4的元素,值是2,代表小白的成绩排名位置在第2位。

同时,我们给countArray下标是4的元素值减1,从2变成1,,代表着下次再遇到94分的成绩时(实际上已经遇不到了),最终排名是第1。
在这里插入图片描述第三步,我们遍历成绩表倒数第三行的小红:

小红是95分,我们找到countArray下标是5的元素,值是3(最初是4,减1变成了3),代表小红的成绩排名位置在第3位。

同时,我们给countArray下标是5的元素值减1,从3变成2,,代表着下次再遇到95分的成绩时(实际上已经遇不到了),最终排名是第2。
在这里插入图片描述这样一来,同样是95分的小红和小绿就能够清楚地排出顺序了,也正因此,优化版本的计数排序属于稳定排序。

后面的遍历过程以此类推,这里就不再详细描述了。

在这里插入图片描述

public static int[] countSort(int[] array) {

   //1.得到数列的最大值和最小值,并算出差值d

   int max = array[0];

   int min = array[0];

   for(int i=1; i<array.length; i++) {

       if(array[i] > max) {

           max = array[i];

       }

       if(array[i] < min) {

           min = array[i];

       }

   }

   int d = max - min;

   //2.创建统计数组并统计对应元素个数

   int[] countArray = new int[d+1];

   for(int i=0; i<array.length; i++) {

       countArray[array[i]-min]++;

   }

   //3.统计数组做变形,后面的元素等于前面的元素之和

   int sum = 0;

   for(int i=0;i<countArray.length;i++) {

       sum += countArray[i];

       countArray[i] = sum;

   }

   //4.倒序遍历原始数列,从统计数组找到正确位置,输出到结果数组

   int[] sortedArray = new int[array.length];

   for(int i=array.length-1;i>=0;i--) {

       sortedArray[countArray[array[i]-min]-1]=array[i];

       countArray[array[i]-min]--;

   }

   return sortedArray;

}

public static void main(String[] args) {

   int[] array = new int[] {95,94,91,98,99,90,99,93,91,92};

   int[] sortedArray = countSort(array);

   System.out.println(Arrays.toString(sortedArray));

在这里插入图片描述1.当数列最大最小值差距过大时,并不适用计数排序。

比如给定20个随机整数,范围在0到1亿之间,这时候如果使用计数排序,需要创建长度1亿的数组。不但严重浪费空间,而且时间复杂度也随之升高。

2.当数列元素不是整数,并不适用计数排序。

如果数列中的元素都是小数,比如25.213,或是0.00000001这样子,则无法创建对应的统计数组。这样显然无法进行计数排序。

在这里插入图片描述

本着共享好的知识的原则,我想把自己看到的一篇好的文章分享一下,文章的链接如下:
https://yq.aliyun.com/articles/655110
谢谢大佬做的这么形象

虽然说是转载,但是奈何那个不是CSDN的博客,所有我手动进行内容的转移了,也算是一种原创吧,但是,原本的东西都是上面博客大佬的,第一次做个搬运工,莫见怪,不涉及侵权。
emmmmm,我姓黄,小小吐槽一下,里面负责讲知识的大佬大黄的名字很不好听。。。奈何本着不改变原创的原则和不太会PS只能认命的原则,,,就只能这样啦,第一次共享别人的知识,有点小紧张和小激动,大家一起加油,在这里再谢谢大佬的图像讲解,膜拜一秒。

我个人自己很久上面讲的实现了一下,博客链接如下,,,emmmmm,老师布置的实验,函数的接口被限制了,只能这样写啦,,,莫吐槽,原创博客链接如下:
https://blog.csdn.net/qq_43918130/article/details/101000118

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值