最长上升子序列问题(dp)

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。

说明:

可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。

进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-subsequence

在这里插入图片描述

class Solution {
    public int lengthOfLIS(int[] nums) {
        if(nums.length==0)  return 0;
        int[]dp = new int[nums.length+1];
        Arrays.fill(dp,1);
        int res=1;
        for(int i=1;i<nums.length;++i) {
            for(int j=0;j<i;++j) {
                if(nums[i]>nums[j]){
                    dp[i] = Integer.max(dp[i],dp[j]+1);
                }
            }
            res = Integer.max(res,dp[i]);
        }
        return res;
    }
}

还有一种方法,就是 遇到大的 +1 ,遇到小的,去前面的队伍里找到一个位置,把这个小的替换掉

在这里插入图片描述
在这里插入图片描述

class Solution {
    public int lengthOfLIS(int[] nums) {
        if(nums.length<=1)  return nums.length;
        int[]dp = new int[nums.length+1];
       // Arrays.fill(dp,1);
         
        int p = 0;
        dp[0] = nums[0];
        for(int i=1;i<nums.length;++i) {
             if(nums[i]>dp[p]) {
                 dp[++p] = nums[i];
             }else{
                 int l=0,r = p;
                 
                 while(l<r) {
                     int mid = (l+r)>>1;
                     if(dp[mid]<nums[i]) {
                         l = mid+1;
                     }else{
                         r = mid;
                     }
                 }
                 dp[l] =  nums[i];
             }
        }
        return p+1;
    }
}

考虑一个简单的贪心,如果我们要使上升子序列尽可能的长,则我们需要让序列上升得尽可能慢,因此我们希望每次在上升子序列最后加上的那个数尽可能的小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值