dp之 博弈问题

LeetCode 877. 石子游戏

亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] 。

游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。

亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的开始或结束处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中石子最多的玩家获胜。

假设亚历克斯和李都发挥出最佳水平,当亚历克斯赢得比赛时返回 true ,当李赢得比赛时返回 false 。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/stone-game
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

每次 只能从两边拿数据,所以,可以画出 一个状态二叉树

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

斜对角线 三角 可以表示这个状态二叉树

dp[i][j] 表示 当 i 到 j 时候, 一号选手 和 二号选手分数差


class Solution {
    public boolean stoneGame(int[] piles) {

        int[][]dp = new int[piles.length][piles.length];
        for(int i=0;i<piles.length-1;++i) dp[i][i] = piles[i];
        for(int i=0;i<piles.length;++i) {
            for(int j=i+1;j<piles.length-i;++j) {
              dp[i][j] = Math.max(piles[i]-dp[i+1][j],piles[j]-dp[i][j-1]);
            }
        }


        return dp[0][dp.length-1]>0;
    }
}

LeetCode 486


class Solution {
    public boolean PredictTheWinner(int[] nums) {
        int n = nums.length;
        int[][]dp = new int[nums.length][nums.length];

        for(int i=0;i<n-1;++i) dp[i][i] = nums[i];
        for(int i=n-2;i>=0;--i) {
            for(int j=i+1;j<n;++j) {
                dp[i][j] = Math.max(nums[i]-dp[i+1][j],nums[j] - dp[i][j-1]);
            }
        }


        return dp[0][n-1] >=0;



    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值