取石子游戏
博弈DP: 关键在于如何表示出这个 DP 状态,DP关系 一般是让对方拿最少的分,间接地让自己得最大的分,一般框架: 例如stone game3: dp[i] = max(sum[i] - dp[i+k]) ,其中dp[i] 表示面对[i, n-1] 堆石子,能取得最大的石子数,sum[i]是[i, n-1]区间和,k是本次的选择,拿1堆,2堆还是3堆。
例子 1. 每次取首or尾
[stone game1](https://leetcode-cn.com/problems/stone-game)
class Solution {
public:
//两种策略,取最前or最后,哪一个让自己得分多 (让对方得分少)
// dp[i][j] = sum[i][j] - min(dp[i+1][j], dp[i][j-1])
// 另一种方法,套娃一步,
// dp[i][j] = max(a[i] + min(dp[i+2][j], dp[i+1][j-1]),
// a[j] + min(dp[i+1][j-1], dp[i][j-2]))
// 关键在于怎么想到用dp[i][j]描述状态
bool stoneGame(vector<int>& scores) {
vector<vector<int>> dp(501, vector<int>(501));
int N = scores.size();
scores.push_back(0);
vector<int> sum(N+1);
for (int i = N-1; i >= 0; --i) {
sum[i] = sum[i+1] + scores[i];
dp[i][i] = scores[i];
}
take(0, N-1, sum, dp);
return dp[0][N-1] > sum[0] - dp[0][N-1];
}
int take(int i, int j, const vector<int>&am