博弈类DP——取石子游戏

本文深入探讨了博弈类动态规划问题,以取石子游戏为例,包括每次取首或尾、先手取前x个后手取[1, 2x]个的策略。通过增加状态维度来简化分析,强调让对手得分最少以最大化自己的利益。并总结了解决此类问题的关键步骤:观察选择策略、建立递推关系以及使用动态规划模板。" 122136161,4828685,Java Lambda流操作详解,"['Java', 'Lambda表达式', '数据处理', '集合操作', '流API']
摘要由CSDN通过智能技术生成

取石子游戏

博弈DP: 关键在于如何表示出这个 DP 状态,DP关系 一般是让对方拿最少的分,间接地让自己得最大的分,一般框架: 例如stone game3: dp[i] = max(sum[i] - dp[i+k]) k \in [1,3] ,其中dp[i] 表示面对[i, n-1] 堆石子,能取得最大的石子数,sum[i]是[i, n-1]区间和,k是本次的选择,拿1堆,2堆还是3堆。

例子 1. 每次取首or尾

[stone game1](https://leetcode-cn.com/problems/stone-game)

class Solution {
public:
    //两种策略,取最前or最后,哪一个让自己得分多 (让对方得分少)
    // dp[i][j] = sum[i][j] - min(dp[i+1][j], dp[i][j-1])
    // 另一种方法,套娃一步,
    // dp[i][j] = max(a[i] + min(dp[i+2][j], dp[i+1][j-1]),
    //                a[j] + min(dp[i+1][j-1], dp[i][j-2]))
    // 关键在于怎么想到用dp[i][j]描述状态
    bool stoneGame(vector<int>& scores) {
        vector<vector<int>> dp(501, vector<int>(501));
        int N = scores.size();
        scores.push_back(0);
        vector<int> sum(N+1);
        for (int i = N-1; i >= 0; --i) {
            sum[i] = sum[i+1] + scores[i];
            dp[i][i] = scores[i];
        }
        take(0, N-1, sum, dp);
        return dp[0][N-1] > sum[0] - dp[0][N-1];
    }
    int take(int i, int j, const vector<int>&am
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值