跟着陶哲轩一起学数学(一): 习题3.1.6: 证明德摩根定律

证明德摩根定律

X / (A U B) = (X \ A) 交 (X \ B)

X \ (A 交 B)  = (X \ A) U (X \ B)

不妨先设几个数据一下看看定律是否正确:
A = {1, 2, 3, 4}
B = {2, 4, 6}
X = {1, 2, 3, 4, 5, 6}
易得
A U B 为 {1, 2, 3, 4, 6}
X \ (A U B) 为 {5}
X \ A 为 {5, 6}
X \ B 为 {1, 5}
因此 (X \ A) U (X \ B) 为 {5}
所以 X \ (A U B) = (X \ A) 交 (X \ B)

再来看看第二个:
A 交 B 为 {2, 4}
X \ (A 交 B) 为 {1, 5, 6}
(X \ A) U (X \ B) 为 {1, 5, 6}
所以 X \ (A 交 B) = (X \ A) U (X \ B)

可以看出上述集合遵守德摩根定律

证明过程

看了<<陶哲轩实分析>>前面部分的证明套路, 个人理解就是进行分类讨论,我们就来讨论X / (A U B)是否为空集:
1.当 X \ (A U B) 不为空集时且存在元素x属于 X \ (A U B):
先看等式左边:
根据差集公理可知x 属于 Xx 不属于 (A U B)
又根据并集公理x 属于 Xx 不属于 A x 不属于 B
再看右边:
还记得有这么一个定义:

x 属于 S1 交 S2 <=> x属于S1 且 x 属于S2

所以x 属于 (X \ A) 交 (X \ B)就可以看做是:

x 属于 (X \ A) 且 x 属于 (X \ B)

又由差集定义得:

A \ B := {x 属于 A : x 不属于 B}

可知:

x 属于 X 且 x 不属于 A, x 属于 X 且 x 不属于 B

天啊! 与右式得出的结论相等!
当然这只是 X \ (A U B) 不为空集时的情况.
2.当 X \ (A U B) 为空集时
用反证法可知(X \ A) 交 (X \ B)也为空集

综上, X \ (A U B) = (X \ A) 交 (X \ B)成立.

同样, 用刚刚的思想就可以证明等式2,由于篇幅问题,过程就不写了,请读者自行推理!

启示

这几天读了<<陶哲轩实分析>>后, 发现推导过程都离不开公理定义, 结论都是由公理定义得出的。所有思考数学问题时,从公理定义出发, 问题总会被解决!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值