证明德摩根定律
X / (A U B) = (X \ A) 交 (X \ B)
和
X \ (A 交 B) = (X \ A) U (X \ B)
不妨先设几个数据一下看看定律是否正确:
A = {1, 2, 3, 4}
B = {2, 4, 6}
X = {1, 2, 3, 4, 5, 6}
易得
A U B
为 {1, 2, 3, 4, 6}
X \ (A U B)
为 {5}
X \ A
为 {5, 6}
X \ B
为 {1, 5}
因此 (X \ A) U (X \ B)
为 {5}
所以 X \ (A U B) = (X \ A) 交 (X \ B)
再来看看第二个:
A 交 B
为 {2, 4}
X \ (A 交 B)
为 {1, 5, 6}
(X \ A) U (X \ B)
为 {1, 5, 6}
所以 X \ (A 交 B) = (X \ A) U (X \ B)
可以看出上述集合遵守德摩根定律
证明过程
看了<<陶哲轩实分析>>前面部分的证明套路, 个人理解就是进行分类讨论
,我们就来讨论X / (A U B)
是否为空集:
1.当 X \ (A U B)
不为空集时且存在元素x
属于 X \ (A U B)
:
先看等式左边:
根据差集公理
可知x 属于 X
且x 不属于 (A U B)
又根据并集公理
得 x 属于 X
且x 不属于 A
且x 不属于 B
再看右边:
还记得有这么一个定义:
x 属于 S1 交 S2 <=> x属于S1 且 x 属于S2
所以x 属于 (X \ A) 交 (X \ B)
就可以看做是:
x 属于 (X \ A) 且 x 属于 (X \ B)
又由差集定义得:
A \ B := {x 属于 A : x 不属于 B}
可知:
x 属于 X 且 x 不属于 A, x 属于 X 且 x 不属于 B
天啊! 与右式得出的结论相等!
当然这只是 X \ (A U B)
不为空集时的情况.
2.当 X \ (A U B)
为空集时
用反证法可知(X \ A) 交 (X \ B)
也为空集
综上, X \ (A U B) = (X \ A) 交 (X \ B)
成立.
同样, 用刚刚的思想就可以证明等式2,由于篇幅问题,过程就不写了,请读者自行推理!
启示
这几天读了<<陶哲轩实分析>>后, 发现推导过程都离不开公理
和定义
, 结论都是由公理
和定义
得出的。所有思考数学问题时,从公理
和定义
出发, 问题总会被解决!