跟着陶神学数学
Stepfen Shawn
dijkstra的小弟
展开
-
跟着陶哲轩一起学数学(四): 幂集公理与习题3.4.6的证明
幂集公理设X, Y都是一个集合,存在一个集合记录为Y^X,且该集合是从X到Y的全体函数构成的。于是:f 属于 Y^X <=> f 是一个定义域为 X 且值域为 Y 的函数逆象如果 U 是 Y 的一个子集,定义集合f ^ -1(U)为f^-1(U) := { x 属于 X : f(x) 属于 U}3.4.6证明过程3.4.6: 设X是一个集合, 证明 {Y : Y 是 X 的一个子集} 是一个集合假设 Y = { 0, 1 }, 于是得到映射关系f: X -> { 0,原创 2021-02-14 18:58:50 · 766 阅读 · 0 评论 -
跟着陶哲轩学数学(三): 函数与集合的关系
函数与集合的关系函数的定义居然能与集合扯上关系!设函数的定义域为集合X值域为Y那么函数f : X -> Y 实际上是一个集合到另一个集合的映射原创 2021-02-14 18:20:17 · 2484 阅读 · 0 评论 -
跟着陶哲轩学数学 目录
期末考差了, 理科拖了后腿,于是就下定决心跟着陶哲轩学数学,以下是我记录的笔记(每日一更):集合跟着陶哲轩一起学数学(一): 习题3.1.6: 证明德摩根定律跟着陶哲轩一起学数学(二): 罗素悖论...原创 2021-02-11 09:49:03 · 272 阅读 · 0 评论 -
跟着陶哲轩一起学数学(二): 罗素悖论
罗素悖论的产生分类公理:y 属于 {x : P(x) 为 真} <=> P(y)为真看上去好像没什么毛病, 但是它导致了一个逻辑上的一个矛盾:当P(x) 表示下述命题时:P(x) <=> "x 是一个集合, 并且 x 不属于 x"简单来说, 当x是一个不包含自身的集合,使得P(x)为真于是我们可以构造这样一个集合U:U := { x : P(x) 为真 } = { x : x 是一个集合, 且 x 不属于 x } 我们对U进行讨论: 它是否包含自身?看原创 2021-02-11 09:43:00 · 713 阅读 · 0 评论 -
跟着陶哲轩一起学数学(一): 习题3.1.6: 证明德摩根定律
证明德摩根定律X / (A U B) = (X \ A) 交 (X \ B)和X \ (A 交 B) = (X \ A) U (X \ B)不妨先设几个数据一下看看定律是否正确:A = {1, 2, 3, 4}B = {2, 4, 6}X = {1, 2, 3, 4, 5, 6}易得A U B 为 {1, 2, 3, 4, 6}X \ (A U B) 为 {5}X \ A 为 {5, 6}X \ B 为 {1, 5}因此 (X \ A) U (X \ B) 为 {5}所以原创 2021-02-09 22:07:59 · 3998 阅读 · 0 评论