任务目标
- 将 MindSearch 部署到 HuggingFace 美化 Gradio 的界面,并提供截图和 Hugging Face 的Space的链接。
学习内容
1. 创建开发机 & 环境配置
由于是 CPU-only,所以选择 10% A100 开发机即可,镜像方面选择 cuda-12.2。
或者采用github codespace选择blank template
然后我们新建一个目录用于存放 MindSearch 的相关代码,并把 MindSearch 仓库 clone 下来。
mkdir -p /root/mindsearch
cd /root/mindsearch
git clone https://github.com/InternLM/MindSearch.git
cd MindSearch && git checkout b832275 && cd ..
接下来,我们创建一个 conda 环境来安装相关依赖。
# 创建环境
conda create -n mindsearch python=3.10 -y
# 激活环境
conda activate mindsearch
# 安装依赖
pip install -r /root/mindsearch/MindSearch/requirements.txt
[CondaError:Run conda init’before’conda activate’]报错解决
如使用github codespace上一步可能会出现以下错误:
输入conda init
并不能解决问题,可以输入 source activate
应用conda环境:
之后即可正常激活conda环境。
[ERROR:Could not open requirements file:[Errno 13]Permission denied:'/root/mindsearch/Mindsearch/requirements.txt]报错解决
这是因为使用codespces时路径不对,命令修改为pip install -r /workspaces/mindsearch/MindSearch/requirements.txt
即可
2. 获取硅基流动 API Key
因为要使用硅基流动的 API Key,所以接下来便是注册并获取 API Key 了。
首先,我们打开 https://account.siliconflow.cn/login 来注册硅基流动的账号(如果注册过,则直接登录即可)。
在完成注册后,打开 https://cloud.siliconflow.cn/account/ak 来准备 API Key。首先创建新 API 密钥,然后点击密钥进行复制,以备后续使用。
3. 启动 MindSearch
- 启动后端
由于硅基流动 API 的相关配置已经集成在了 MindSearch 中,所以我们可以直接执行下面的代码来启动 MindSearch 的后端。
export SILICON_API_KEY=第二步中复制的密钥
conda activate mindsearch
# 如果使用codespaces就是:
# cd /workspaces/mindsearch/MindSearch
cd /root/mindsearch/MindSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine DuckDuckGoSearch
- 启动前端
在后端启动完成后,我们打开新终端运行如下命令来启动 MindSearch 的前端。
conda activate mindsearch
# 如果采用codespaces就是:
# cd /workspaces/mindsearch/MindSearch
cd /root/mindsearch/MindSearch
python frontend/mindsearch_gradio.py
最后,我们把 8002 端口和 7882 端口都映射到本地。可以在本地的 powershell 中执行如下代码:
ssh -CNg -L 8002:127.0.0.1:8002 -L 7882:127.0.0.1:7882 root@ssh.intern-ai.org.cn -p <你的 SSH 端口号>
然后,我们在本地浏览器中打开 localhost:7882
即可体验啦。
如果遇到了 timeout 的问题,可以按照 文档 换用 Bing 的搜索接口。
部署planner部分结果
部署searcher部分结果
4. 部署到 HuggingFace Space
最后,我们来将 MindSearch 部署到 HuggingFace Space。
我们首先打开 https://huggingface.co/spaces ,并点击 Create new Space,如下图所示。
在输入 Space name 并选择 License 后,选择配置如下所示。
然后,我们进入 Settings,配置硅基流动的 API Key。如下图所示。
往下翻,选择 New secrets,name 一栏输入 SILICON_API_KEY,value 一栏输入你的 API Key 的内容。
最后回到codespaces,我们先新建一个目录,准备提交到 HuggingFace Space 的全部文件。
# 创建新目录
mkdir -p /workspaces/mindsearch/mindsearch_deploy
# 准备复制文件
cd /workspaces/mindsearch
cp -r /workspaces/mindsearch/MindSearch/mindsearch /workspaces/mindsearch/mindsearch_deploy
cp /workspaces/mindsearch/MindSearch/requirements.txt /workspaces/mindsearch/mindsearch_deploy
# 创建 app.py 作为程序入口
touch /workspaces/mindsearch/mindsearch_deploy/app.py
其中,app.py 的内容如下:
import json
import os
import gradio as gr
import requests
from lagent.schema import AgentStatusCode
os.system("python -m mindsearch.app --lang cn --model_format internlm_silicon &")
PLANNER_HISTORY = []
SEARCHER_HISTORY = []
def rst_mem(history_planner: list, history_searcher: list):
'''
Reset the chatbot memory.
'''
history_planner = []
history_searcher = []
if PLANNER_HISTORY:
PLANNER_HISTORY.clear()
return history_planner, history_searcher
def format_response(gr_history, agent_return):
if agent_return['state'] in [
AgentStatusCode.STREAM_ING, AgentStatusCode.ANSWER_ING
]:
gr_history[-1][1] = agent_return['response']
elif agent_return['state'] == AgentStatusCode.PLUGIN_START:
thought = gr_history[-1][1].split('```')[0]
if agent_return['response'].startswith('```'):
gr_history[-1][1] = thought + '\n' + agent_return['response']
elif agent_return['state'] == AgentStatusCode.PLUGIN_END:
thought = gr_history[-1][1].split('```')[0]
if isinstance(agent_return['response'], dict):
gr_history[-1][
1] = thought + '\n' + f'```json\n{json.dumps(agent_return["response"], ensure_ascii=False, indent=4)}\n```' # noqa: E501
elif agent_return['state'] == AgentStatusCode.PLUGIN_RETURN:
assert agent_return['inner_steps'][-1]['role'] == 'environment'
item = agent_return['inner_steps'][-1]
gr_history.append([
None,
f"```json\n{json.dumps(item['content'], ensure_ascii=False, indent=4)}\n```"
])
gr_history.append([None, ''])
return
def predict(history_planner, history_searcher):
def streaming(raw_response):
for chunk in raw_response.iter_lines(chunk_size=8192,
decode_unicode=False,
delimiter=b'\n'):
if chunk:
decoded = chunk.decode('utf-8')
if decoded == '\r':
continue
if decoded[:6] == 'data: ':
decoded = decoded[6:]
elif decoded.startswith(': ping - '):
continue
response = json.loads(decoded)
yield (response['response'], response['current_node'])
global PLANNER_HISTORY
PLANNER_HISTORY.append(dict(role='user', content=history_planner[-1][0]))
new_search_turn = True
url = 'http://localhost:8002/solve'
headers = {'Content-Type': 'application/json'}
data = {'inputs': PLANNER_HISTORY}
raw_response = requests.post(url,
headers=headers,
data=json.dumps(data),
timeout=20,
stream=True)
for resp in streaming(raw_response):
agent_return, node_name = resp
if node_name:
if node_name in ['root', 'response']:
continue
agent_return = agent_return['nodes'][node_name]['detail']
if new_search_turn:
history_searcher.append([agent_return['content'], ''])
new_search_turn = False
format_response(history_searcher, agent_return)
if agent_return['state'] == AgentStatusCode.END:
new_search_turn = True
yield history_planner, history_searcher
else:
new_search_turn = True
format_response(history_planner, agent_return)
if agent_return['state'] == AgentStatusCode.END:
PLANNER_HISTORY = agent_return['inner_steps']
yield history_planner, history_searcher
return history_planner, history_searcher
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">MindSearch Gradio Demo</h1>""")
gr.HTML("""<p style="text-align: center; font-family: Arial, sans-serif;">MindSearch is an open-source AI Search Engine Framework with Perplexity.ai Pro performance. You can deploy your own Perplexity.ai-style search engine using either closed-source LLMs (GPT, Claude) or open-source LLMs (InternLM2.5-7b-chat).</p>""")
gr.HTML("""
<div style="text-align: center; font-size: 16px;">
<a href="https://github.com/InternLM/MindSearch" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">🔗 GitHub</a>
<a href="https://arxiv.org/abs/2407.20183" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">📄 Arxiv</a>
<a href="https://huggingface.co/papers/2407.20183" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">📚 Hugging Face Papers</a>
<a href="https://huggingface.co/spaces/internlm/MindSearch" style="text-decoration: none; color: #4A90E2;">🤗 Hugging Face Demo</a>
</div>
""")
with gr.Row():
with gr.Column(scale=10):
with gr.Row():
with gr.Column():
planner = gr.Chatbot(label='planner',
height=700,
show_label=True,
show_copy_button=True,
bubble_full_width=False,
render_markdown=True)
with gr.Column():
searcher = gr.Chatbot(label='searcher',
height=700,
show_label=True,
show_copy_button=True,
bubble_full_width=False,
render_markdown=True)
with gr.Row():
user_input = gr.Textbox(show_label=False,
placeholder='帮我搜索一下 InternLM 开源体系',
lines=5,
container=False)
with gr.Row():
with gr.Column(scale=2):
submitBtn = gr.Button('Submit')
with gr.Column(scale=1, min_width=20):
emptyBtn = gr.Button('Clear History')
def user(query, history):
return '', history + [[query, '']]
submitBtn.click(user, [user_input, planner], [user_input, planner],
queue=False).then(predict, [planner, searcher],
[planner, searcher])
emptyBtn.click(rst_mem, [planner, searcher], [planner, searcher],
queue=False)
demo.queue()
demo.launch(server_name='0.0.0.0',
server_port=7860,
inbrowser=True,
share=True)
在最后,将 /root/mindsearch/mindsearch_deploy 目录下的文件(使用 git)提交到 HuggingFace Space 即可完成部署了。注意将代码提交到huggingface space中需要配置hugginface的token。
Huggingface Space提交
我们从huggingface 把我们的空项目下载下来,复制图中框出位置的命令:
到codespaces终端中执行:
cd /workspaces/codespaces-blank
# 下面的代码注意不能直接用把xxxx 换成你的token
git clone https://xxxx@huggingface.co/spaces/xxxx/mindsearch
可以看到下早好了hf空项目
我们需要将上面mindsearch_deploy 文件下内 app.py requirements.txt 以及mindsearch 目录下的文件复制到/workspaces/codespaces-blank/mindsearch
cd /workspaces/mindsearch/mindsearch_deploy
cp app.py /workspaces/codespaces-blank/mindsearch
cp requirements.txt /workspaces/codespaces-blank/mindsearch
cp -r mindsearch/ /workspaces/codespaces-blank/mindsearch
然后提交:
cd /workspaces/codespaces-blank/mindsearch
git add .
git commit -m "Add application file"
# 上面步骤有了,这步可以不用
# git remote set-url origin https://<user_name>:<token>@huggingface.co/<user_name>/<repo_name>
# 或者ssh
# git remote set-url origin git@hf.co:<user_name>/<repo_name>
git push origin
ssh配置
若采用ssh方式配置远程仓库,还需要经过以下步骤才能成功:
- 生成密钥
- 打开hf用户settings
- 选择SSH and GPG keys
- 选择添加SSH Keys
把生成的公钥复制进去
就可以上传成功了
部署结果
然后打开huggingface Space发现已经部署成功:
huggingface space 链接
https://huggingface.co/spaces/celialychee/mindsearch