题目描述:
翰翰和达达饲养了N只小猫,这天,小猫们要去爬山。
经历了千辛万苦,小猫们终于爬上了山顶,但是疲倦的它们再也不想徒步走下山了(呜咕>_<)。
翰翰和达达只好花钱让它们坐索道下山。
索道上的缆车最大承重量为W,而N只小猫的重量分别是C1、C2……CN。
当然,每辆缆车上的小猫的重量之和不能超过W。
每租用一辆缆车,翰翰和达达就要付1美元,所以他们想知道,最少需要付多少美元才能把这N只小猫都运送下山?
输入格式
第1行:包含两个用空格隔开的整数,N和W。
第2…N+1行:每行一个整数,其中第i+1行的整数表示第i只小猫的重量CiCi。
输出格式
输出一个整数,表示最少需要多少美元,也就是最少需要多少辆缆车。
数据范围
1≤N≤18,
1≤Ci≤W≤10^8
输入样例:
5 1996
1
2
1994
12
29
输出样例:
2
分析:
搜索顺序: 确定每一只猫枚举放到哪个缆车上 或者 新开一个缆车单独放。
剪枝 : 1、优化搜索顺序, 对所有猫的重量进行从大到小的排序,优先搜索确定重量更大的猫,举一个极端一点的例子,当猫很重,那么放1个进去就会超过我们的W,就可以很快的回溯,分支数就很少。但是如果猫很轻,那么我们的分支数就会很多。 2、最优性剪枝,记录当前已经开的缆车数,当缆车数k已经超过了我们的全局最优解res,就可以直接return了。 3、可行性剪枝,每一只猫能否放到缆车上是有条件的,即当猫的重量 + 缆车的现有重量不超过W 的时候才能放入。
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 20;
int w[N] , sum[N];
int n , W , res = N ;
void dfs(int u , int k){
if( k >= res ) return ;
if( u == n )
{
res = k;
return ;
}
for(int i = 0 ; i < k ; i ++)
{
if( sum[i] + w[u] <= W)
{
sum[i] += w[u];
dfs( u + 1, k);
sum[i] -= w[u];
}
}
sum[k] += w[u];
dfs(u + 1 , k + 1);
sum[k] -= w[u];
}
int main(){
cin >> n >> W;
for(int i = 0 ; i < n ; i ++) cin >> w[i];
//优化搜索顺序
sort(w , w + n );
reverse(w , w + n );
dfs(0,0);
cout << res << endl;
return 0;
}