背包问题总结

背包问题设计的知识点很多,包括0-1背(每个物品只有一件)、优化版的0-1背包问题、完全背包问题(每个物品有无数件)、二维费用背包问题(涉及两个值得限制,不再只是重量)、分组背包问题(物品可分为多组,每组中最多只有一个可以选择)、有依赖的背包问题…

例题:474. 一和零(二维费用背包问题)

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例 1:
输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:
输入:strs = ["10", "0", "1"], m = 1, n = 1
输出:2
解释:最大的子集是 {"0", "1"} ,所以答案是 2 。
 
提示:
1 <= strs.length <= 600
1 <= strs[i].length <= 100
strs[i] 仅由 '0' 和 '1' 组成
1 <= m, n <= 100

(1)三维空间约减至二维空间。
(2)增加最低限制,使得循环次数减少。

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        int countZeros=0;
        int countOnes=0;
        //二维背包问题;
        int[][] dp=new int[m+1][n+1];
        //状态转移方程为:dp[i][p][q]=Math.max(dp[i-1][p][q],dp[i-1][p-][q-]+1) 可以要的情况下,或者直接等于dp[i-1][p][q];
        for(int i=1;i<=strs.length;i++){
            int onesnum=onesNum(strs[i-1]);
            int zerosnum=zerosNum(strs[i-1]);
            for(int p=m;p>=zerosnum;p--){
                for(int q=n;q>=onesnum;q--){
                    dp[p][q]=Math.max(dp[p][q],dp[p-zerosnum][q-onesnum]+1);
                }
            }
        }
        return dp[m][n];
    }

    public int zerosNum(String str){
        int sum=0;
        for(int i=0;i<str.length();i++){
            if(str.charAt(i)=='0'){
                sum++;
            }
        }
        return sum;
    }

    public int onesNum(String str){
        int sum=0;
        for(int i=0;i<str.length();i++){
            if(str.charAt(i)=='1'){
                sum++;
            }
        }
        return sum;
    }
}

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
01背包问题动态规划中的一个经典问题,它的解法也非常经典,下面是我对该问题的动态规划总结。 1. 状态定义 定义一个二维数组dp[i][j],其中i表示当前考虑到第i个物品,j表示当前背包容量为j,dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。 2. 状态转移方程 对于每个物品,我们可以选择将其放入背包,也可以选择不放入背包,因此状态转移方程如下: 如果不将第i个物品放入背包,则 dp[i][j] = dp[i - 1][j] 即前i-1个物品已经在容量为j的背包中的最大价值就是dp[i - 1][j]。 如果将第i个物品放入背包,则 dp[i][j] = dp[i-1][j-w[i]] + v[i] 即前i-1个物品在容量为j-w[i]的背包中的最大价值加上第i个物品的价值v[i]。 最终的状态转移方程为: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]) 3. 边界条件 当物品数量为0时,dp[0][j]都等于0;当背包容量为0时,dp[i][0]都等于0。 4. 求解最优解 最终的最大价值为dp[n][W],其中n表示物品数量,W表示背包容量。 5. 代码实现 以下是01背包问题动态规划代码实现,其中w和v分别表示物品的重量和价值,n和W表示物品数量和背包容量: ```python def knapsack(w, v, n, W): dp = [[0] * (W+1) for _ in range(n+1)] for i in range(1, n+1): for j in range(1, W+1): if j < w[i-1]: dp[i][j] = dp[i-1][j] else: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1]) return dp[n][W] ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值