第四次作业

机器学习—数学基础【1】

1采用两种方法求取以下方程的解,并采用绘图的方式比较两种方法的结果。

#
import matplotlib.pyplot as plt
import numpy as np
import numpy.linalg as nl
import sympy as sp
#法一:
A=np.array([[3,-2,1],[2,-1,1],[1,1,1]])
#print(A)
B=np.array([-1,-1,2])
#print(B)
solve1=nl.solve(A,B)
print(solve1)
#法二
C=nl.inv(A)#矩阵求逆
#print(C)
solve2=np.dot(C,B)
print(solve2)
#法三
x,y,z=sp.symbols("x y z")
f1=3*x-2*y+z+1
f2=2*x-1*y+z+1
f3=x+y+z-2
s_3=sp.linsolve([f1,f2,f3],(x,y,z))
solve3=list(list(s_3)[0])
print(solve3)

#区别
plt.figure(figsize=(2,12))
plt.subplot(311)
plt.plot(solve1[0],solve1[1],marker='o',color='r',linestyle='')
plt.plot(solve2[0],solve2[1],marker='d',color='y',linestyle='')
plt.plot(solve3[0],solve3[1],marker='*',color='g',linestyle='')
label=['s1_XY','s2_XY','s3_XY']
plt.legend(label,loc='upper right')
plt.subplot(312)
plt.plot(solve1[1],solve1[2],marker='o',color='r',linestyle='')
plt.plot(solve2[1],solve2[2],marker='d',color='y',linestyle='')
plt.plot(solve3[1],solve3[2],marker='*',color='g',linestyle='')
label=['s1_YZ','s2_YZ',"s3_YZ"]
plt.legend(label,loc='upper right')
plt.subplot(313)
plt.plot(solve1[0],solve1[2],marker='o',color='r',linestyle='')
plt.plot(solve2[0],solve2[2],marker='d',color='y',linestyle='')
plt.plot(solve3[0],solve3[2],marker='*',color='g',linestyle='')
label=['s1_XZ','s2_XZ',"s3_XZ"]
plt.legend(label,loc='upper right')

plt.show()

 

2利用面向对象编程方法设计画圆类,实例化该类后可绘制指定半径的圆。

class Circle:
    x0=0
    y0=0
    r=0
    def __init__(self,x,y,radius):
        self.x0=x
        self.y0=y
        self.r=radius
    def Draw_Circle(self):
        x=np.linspace(self.x0-self.r,self.x0+self.r,1500)
        y1=self.y0+np.sqrt(np.power(self.r,2)-np.power(x-self.x0,2))
        y2=self.y0-np.sqrt(np.power(self.r,2)-np.power(x-self.x0,2))
        plt.figure()
        plt.xlabel("X")
        plt.ylabel("Y")
        plt.title("Circle_Draw")
        plt.axis('equal')
        plt.plot(x,y1,linestyle='-',color='r')
        plt.plot(x,y2,linestyle='-',color='r')
        plt.scatter(self.x0,self.y0,marker='o',color='k')
        plt.grid()
        plt.show()

c=Circle(0,0,2)
c.Draw_Circle()

 

3画出Logistic函数曲线及过点(0,0.5)的水平线(观察其与f(x)函数之间的关系)f(x)=1/(1+e^-x)

x=np.linspace(-6,6,1500)
y=1/(1+np.exp(-x))

plt.figure()
plt.xlim(-6,6)
plt.ylim(0,1.2)
plt.yticks(np.linspace(0,1,5,endpoint=True))
plt.scatter(0,0.5,marker='o')
plt.plot(x,y,linestyle='-',color='k')
plt.plot(x,np.ones(len(x))*0.5,linestyle='-.',color='grey')
plt.text(0.5,0.53,(0,0.5))
plt.grid(True)
plt.show()

 

总结:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值