如何将dataframe类型的数据一列拆分两列

数据原始是这样的:

 处理代码如下:

df = pd.DataFrame(data)
print(df)

df['access_nginx_deb.eventtime'] = df["access_nginx_deb.eventtime,counts"].map(lambda x:x.split(',')[0]) #分别处理新旧两列
df['counts'] = data["access_nginx_deb.eventtime,counts"].map(lambda x:x.split(',')[1])
print(df)

处理之后就是这样的:

 

 原理就是,将这列数据按逗号拆分成两部分

第一部分赋值给新增的access_nginx_deb.eventtime列,第二部分赋值给新增的counts列

你可以使用split函数将一个列拆分两列。首先,使用split函数将列的值按照指定的分隔符进行拆分,设置参数expand为True可以将结果转换为DataFrame。然后,使用drop函数删除原来的列。以下是一个示例代码: ```python df[['a', 'b']] = df['row'].str.split(' ', expand=True) df.drop(axis=1, columns='row', inplace=True) ``` 在这个例子中,将名为'row'的列按空格进行拆分,并将拆分后的结果分别赋值给新的两列'a'和'b'。最后,使用drop函数删除原来的'row'列。 for j in df3_new['migrate']] l2 = [list(k)[1 for k in df3_new['migrate']] df3_new['地区'] = l1 df3_new['city'] = l2 df3_new1 = df3_new.drop('migrate', axis=1) ``` 在这个例子中,我们使用循环遍历df3_new中的每一行,并使用列表解析将'migrate'列中的元组拆分成两个列表'l1'和'l2'。然后,将这两个列表分别赋值给新的两列'地区'和'city'。最后,使用drop函数删除原来的'migrate'列,并将结果保存到df3_new1中。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Python Pandas:DataFrame 一列切分成多列、分隔符切分选字段](https://blog.csdn.net/baidu_40468340/article/details/128263235)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [DataFrame 中某一列是元组形式拆成两列](https://blog.csdn.net/weixin_42080294/article/details/89318899)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Dataframe一列分割成多列](https://blog.csdn.net/weixin_46599926/article/details/122985897)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值