题目链接:D. Beautiful Array
题意:给你一个n(1 ~ 3e5)个元素(-1e9 ~ 1e9)的数组,然后给你一个x(-100~100),你要选取一个区间,让这个区间内的所有元素乘以x(可以不乘)使得数组的最大子段和最大,输出最大子段和。
思路:
- 刚开始看到这题,就想,先求一波最大子段和。然后
x <= 0的话那就找最小子段和的区间,让这个区间的数乘x
x > 0的话就找最大子段和的区间,让这个区间的数乘x
最后再跑一遍最大子段和,输出。
于是就有了下面这个代码
#include<bits/stdc++.h>
using namespace std;
const int N = 300020;
typedef long long ll;
int main()
{
ios::sync_with_stdio(0);
int n,m;
ll a[N];
ll init = 0;//最开始的时候的最大子段和
ll sum = 0;
cin >> n >> m;
for(int i = 0; i < n; i++)
{
cin >> a[i];
sum += a[i];
if(sum > init)
{
init = sum;
}
if(sum < 0)
{
sum = 0;
}
}
if(m <= 0)//如果要乘的数小于等于0,我们就去找最小子段和
{
int l = 0,r = n-1;
ll tep = 0,mn = 0;
sum = 0;
for(int i = 0; i < n; i++)
{
sum += a[i];
if(sum < mn)
{
mn = sum;
l = tep;
r = i;
}
if(sum > 0)
{
sum = 0;
tep = i+1;
}
}
for(int i = l; i <= r; i++)
{
a[i] *= m;
}
}
else
{
int l = 0,r = n-1;
ll tep = 0,mx = 0;
sum = 0;
for(int i = 0; i < n; i++)
{
sum += a[i];
if(sum > mx)
{
mx = sum;
l = tep;
r = i;
}
if(sum < 0)
{
sum = 0;
tep = i+1;
}
}
//cout << l << ' ' << r << endl;
for(int i = l; i <= r; i++)
{
a[i] *= m;
}
}
sum = 0;
for(int i = 0; i < n; i++)
{
sum += a[i];
if(sum > init)
{
init = sum;
}
if(sum < 0)
{
sum = 0;
}
}
cout << init << endl;
return 0;
}
但是一直wa在第10个上,就很难受。
- 所以选取最小子段和的区间并不是最优的
比如下面这个样例:
8 -2
-5 -3 -1 10 -2 -6 8 9
最小子段和的区间应该是1-6,就是-5到-6这个区间,乘-2之后变成了
10 6 2 -20 4 12 8 9 此时最大子段和为33
但是我们如果选取5-6,也就是-2到-6这个区间,乘乘-2之后变成了
-5 -3 -1 10 4 12 8 9 此时最大子段和为43 - 因此我们不如用一个数组来记录当前这个数的操作,然后就有了下面的这个代码
#include<bits/stdc++.h>
using namespace std;
const int N = 300010;
typedef long long ll;
ll a[N],dp[N][3];
/*
dp[i][0]表示的是i之前还没乘x
dp[i][1]表示的是i正在乘x
dp[i][2]表示的是i之前已经乘完了x
*/
int main()
{
int n,x;
cin >> n >> x;
for(int i = 1; i <= n; i++)
{
cin >> a[i];
dp[i][0] = max(dp[i-1][0]+a[i],dp[i][0]);
dp[i][1] = max(dp[i-1][0]+a[i]*x,dp[i][1]);
dp[i][1] = max(dp[i-1][1]+a[i]*x,dp[i][1]);
dp[i][2] = max(dp[i-1][1]+a[i],dp[i][2]);
dp[i][2] = max(dp[i-1][2]+a[i],dp[i][2]);
}
ll ans = 0;
for(int i = 1; i <= n; i++)
{
for(int j = 0; j < 3; j++)
{
ans = max(ans,dp[i][j]);
}
}
cout << ans << endl;
return 0;
}