PyTorch单机多卡训练(无废话)

目前大家基本都在使用DistributedDataParallel(简称DDP)用来训练,该方法主要用于分布式训练,但也可以用在单机多卡。

第一步:初始化分布式环境,主要用来帮助进程间通信

torch.distributed.init_process_group(backend='nccl')

第二步:负责创建 args.local_rank 变量,并接受 torch.distributed.launch 注入的值

归根到底是创建一个变量,来接收torch.distributed.launch 注入。
目前代码中常见的两种方式:

local_rank = int(os.environ["LOCAL_RANK"])   # 这种是从自定义config文件中获取LOCAL_RANK

另外一种是parser:

parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", type=int, default=-1)
args = parser.parse_args()

第三步:每个进程根据自己的local_rank设置应该使用的GPU

torch.cuda.set_device(args.local_rank)
torch.manual_seed(hps.train.seed)   # 非必要,尽可能固定种子

第四步:分布式数据和模型

# 分布式数据
train_sampler = DistributedSampler(train_dataset)
train_loader = torch.utils.data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

于弋gg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值