- 博客(118)
- 收藏
- 关注
原创 【Python】PDF文件处理(PyPDF2、borb、fitz)
Python提供了多种方法和库用于处理PDF文件,这些工具可以帮助开发者实现诸如读取、写入、合并、拆分以及压缩等功能。以下是几个常用的Python PDF操作库及其基本用法(PyPDF2、borb、fitz)。
2025-05-08 16:50:35
554
原创 C++使用PoDoFo库处理PDF文件
PoDoFo 是一个用 C++ 编写的自由开源库,专用于 读取、写入和操作 PDF 文件。它适用于需要程序化处理 PDF 文件的应用程序,比如批量生成、修改、合并、提取元数据、绘图等。
2025-05-08 15:56:58
1202
原创 【Python】mat npy npz 文件格式
MAT 文件和 NP(.npy 或 .npz)文件是两种不同的格式,用于存储数组数据。它们分别由 MATLAB 和 NumPy 开发,主要用于各自环境中的数据存储和交换。选择哪种格式取决于你的具体需求。如果你的工作流程主要围绕 MATLAB 进行,那么 MAT 文件可能是更合适的选择。然而,如果你主要使用 Python 和 NumPy 来进行数据分析或机器学习任务,那么 NPY 或 NPZ 文件将是更好的选择。此外,如果你希望跨平台共享数据并且保持良好的性能,NPY/NPZ 文件也提供了非常有效的解决方案。
2025-05-08 11:53:43
793
原创 【LunarVim】CMake LSP配置
在 LunarVim 中为 `CMakeLists.txt` 文件启用代码提示(如补全和语义高亮),你需要安装支持 CMake 的 LSP(语言服务器)和适当的插件。以下是完整配置指南:
2025-05-08 09:37:55
541
转载 MCP(Model Context Protocol 模型上下文协议)
[转载自GuangzhengLi](https://guangzhengli.com/blog/zh/model-context-protocol)MCP(Model Context Protocol 模型上下文协议)
2025-04-28 15:02:02
36
原创 【Python】pkl、npz、parquet文件格式
`.pkl`、`.npz` 和 `.parquet` 是python三种常见的文件格式,分别用于不同的数据存储和序列化场景。
2025-04-28 12:04:00
892
原创 【LunarVim】python DAP配置
🚀 一键调试训练代码 + 自动用终端窗口输出 + 适配 tqdm/matplotlib + 哪怕 `input()` 也不会挂!
2025-04-11 10:16:03
333
原创 【LunarVim】解决which-key 自定义键位注册不成功问题
which-key 自定义键位注册不成功问题,暴露了LunarVim 插件和配置加载顺序的一些细节坑。
2025-04-10 18:06:33
563
原创 【LunarVim】python 开发环境IDE配置
用于配置 LunarVim(一个基于 Neovim 的现代化 IDE 风格编辑器)的 Lua 脚本,主要用于增强 Python 开发体验。
2025-04-10 12:29:02
605
原创 Python 使用 Cython 对函数加速并调用 C++ 代码
使用c++写好的库,用python调用,速度怎么样?C++ 库与 Python 结合使用的常见的方式Cython是一个强大的工具,可以将 Python 代码编译为 C 或 C++ 扩展模块,从而显著提高性能。下面是Cython的使用示例。
2025-04-02 15:31:08
720
原创 C++ 库与 Python 结合使用的常见的方式
在 Python 中调用使用 C++ 编写的库通常可以显著提高性能,尤其是在涉及计算密集型任务时。这是因为 C++ 是一种编译型语言,执行速度比解释型的 Python 快得多。
2025-04-02 14:51:44
518
原创 【Linux】mv误操作:mv /* /path/
Linux使用mv移动文件,进行了失误操作,将根目录的文件移动到了某一个文件夹中,导致mv等命令用不了(-bash: /usr/bin/mv: 没有那个文件或目录)
2025-03-12 16:13:31
295
原创 ONNX Runtime 与 CUDA、cuDNN 的版本对应
ONNX Runtime 与 CUDA、cuDNN 的版本对应关系是深度学习模型部署中的关键点,确保版本兼容性可以避免运行时错误并优化性能。以下是详细的版本对应关系及注意事项:
2025-02-19 16:57:47
1782
原创 SAM C++ TensorRT(实时图像分割)
用于SAM(segment anything model分割一切模型)的TensorRT和CUDA优化的高表现C++实现,特别适用于实时图像分割任务。
2025-02-19 15:26:17
517
原创 BiRefNet C++ TensorRT (二分类图像分割)
用`TensorRT`和`CUDA`的双边参考网络(`BiRefNet`)的高性能`c++`实现,针对实时高分辨率二分类图像分割进行了优化。
2025-02-18 16:09:05
909
原创 OpenCL实现深度图生成点云功能
**PyOpenCL** 是一个用于在Python中访问和使用OpenCL(Open Computing Language)的库。OpenCL是一种开放标准,旨在使程序能够在不同的平台上高效运行,包括CPU、GPU、FPGA和其他类型的加速器。通过PyOpenCL,开发者可以在Python中编写并执行OpenCL代码,从而利用这些硬件加速计算任务。
2025-02-14 17:53:46
998
原创 图像缩放的双线性插值实现方式
双线性插值是一种用于在二维网格上进行插值的方法,适用于图像处理、计算机图形学等领域。它通过利用四个邻近点的已知值,估算出任意点的值。双线性插值在两个方向(通常是水平和垂直)上分别进行线性插值,因此得名“双线性”
2025-02-14 17:40:23
828
原创 【OpenCV】双目相机计算深度图和点云
双目相机计算深度图的基本原理是通过两台相机从不同角度拍摄同一场景,然后利用视差来计算物体的距离。本文的Python实现示例,使用OpenCV库来处理图像和计算深度图。
2025-02-13 13:34:50
2498
3
原创 使用瑞芯微RK3588的NPU进行模型转换和推理
使用边缘设备进行算法落地时,通常要考虑模型推理速度,NVIDA系列平台可以使用TensorRT和CUDA加速,瑞芯微RK3588的板子上都是Arm的手机GPU,虽然没有类似CUDA的加速计算方式,但是提供了NPU进行加速推理,本文说明了如何使用瑞芯微RK3588的NPU进行模型转换和推理
2025-02-12 15:58:57
2796
原创 轻量级解决方案:唤醒词检测+固定语音指令识别
如果需要在Linux上运行一个轻量级的解决方案,完成**唤醒词检测**和**固定语音指令识别**,以下是推荐的工具和框架组合:
2025-02-11 10:45:24
2095
原创 SLAM的项目结构和推荐的一些SLAM项目
一个典型的SLAM项目结构包括数据采集、前端处理、后端优化、地图构建、定位、可视化、存储与日志、配置与参数、测试与评估等多个模块。每个模块各司其职,共同实现SLAM系统的功能。
2025-02-10 09:08:17
865
原创 ONNX动态量化后,如果继续使用TensorRT Engine,还需要继续量化吗?
在使用ONNX Runtime进行动态量化()后,生成的ONNX模型已经是量化模型(通常是INT8精度)。
2025-02-08 15:17:29
402
原创 Llama.cpp简介
Llama.cpp 是一个高效、灵活的 LLM 推理工具,特别适合在本地设备上运行大型语言模型。它通过量化、硬件加速和混合推理等技术,显著降低了资源需求,同时保持了较高的推理性能。无论是开发者还是普通用户,都可以通过 Llama.cpp 轻松部署和运行 LLM 模型。
2025-02-06 16:32:39
1313
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人