pytorch单机多卡训练_数据并行DataParallel

1.单机多卡概述

单卡多级的模型训练,即并行训练,可分为数据并行和模型并行两种.

数据并行是指,多张 GPUs 使用相同的模型副本,但采用不同 batch 的数据进行训练.

模型并行是指,多张 GPUs 使用同一 batch 的数据,分别训练模型的不同部分.

在这里插入图片描述

2.DataParallel源码

2.1 需要传入的参数

module(Module):被并行运算的模型

device_ids=None: CUDA devices

output_device=None:输出设备位置

在这里插入图片描述

2.2 forward

在这里插入图片描述

检查设备是否合理;
如果合理遍历模型参数和其缓存区, 检查参数和缓冲区的设备是否与src_device_obj相同如果不同抛RuntimeError。
                源码说模型和参数必须放到device_ids[0]
                将输入数据根据设备数量分发到不同的设备上。

3.DataParallel案例

通过 PyTorch 使用 GPU 非常简单。您可以将模型放在 GPU 上

device = torch.device("cuda:0")
model.to(device)

然后,您可以将所有张量复制到 GPU:

mytensor = my_tensor.to(device)

–注意:mytensor.to(device)等所有tensor操作都是copy数据然后重载,不改变原tensor

。但是,Pytorch 默认情况下仅使用一个 GPU。通过使用以下命令使模型并行运行,您可以轻松地在多个 GPU 上运行操作 DataParallel :

model = nn.DataParallel(model)

导入Pytorch模块并导入参数

import torch
from torch.utils.data import Dataset,DataLoader
import torch.nn as nn


# Parameters and DataLoaders
input_size = 5
output_size = 2

batch_size = 30
data_size = 100

device

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

设计一个dummy数据集

class RandomDataset(Dataset):
	def __init__(self, size, length):
    	self.len = length
  	  	self.data = torch.randn(length, size)

	def __getitem__(self, index):
	    return self.data[index]
	
	def __len__(self):
 		return self.len
    
rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
                         batch_size=batch_size, shuffle=True)

Our model

class Model(nn.Module):
	def __init__(self, input_size, output_size):
    	super(Model, self).__init__()
    	self.fc = nn.Linear(input_size, output_size)

	def forward(self, input):
    	output = self.fc(input)
    	print("\tIn Model: input size", input.size(),
          "output size", output.size())

    	return output

创建模型和DataParallel

model = Model(input_size,output_size)       #初始化参数对应,不着急进行设备关联
if torch.cuda.device_count() >1:            #判别一下是否多GPU
    print("可以进行数据并行训练")
    model = nn.DataParallel(model)          #是的话可以进行初始化操作

model = model.to(device)                    #pytorch一般而已都是重新赋值操作而非修改源数据

数据并行加载数据

for data in rand_loader:
    input = data.to(device)
    output = model(input)
    print("\tIn Model: input size", input.size())

运行模型

for data in rand_loader:
    input = data.to(device)
    output = model(input)
    print("Outside: input size", input.size(),
          "output_size", output.size())

/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/linear.py:116: UserWarning:

Attempting to run cuBLAS, but there was no current CUDA context! Attempting to set the primary context… (Triggered internally at …/aten/src/ATen/cuda/CublasHandlePool.cpp:135.)

    In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
    In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
    In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
    In Model: input size torch.Size([6, 5]) output size torch.Size([6, 2])

Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
In Model: input size torch.Size([6, 5]) output size torch.Size([6, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
In Model: input size torch.Size([6, 5]) output size torch.Size([6, 2])
In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([3, 5]) output size torch.Size([3, 2])
In Model: input size torch.Size([3, 5]) output size torch.Size([3, 2])
In Model: input size torch.Size([3, 5]) output size torch.Size([3, 2])
In Model: input size torch.Size([1, 5]) output size torch.Size([1, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

如果您没有 GPU 或只有一个 GPU,则当我们批量处理 30 个输入和 30 个输出时,模型将按预期获得 30 个输入和 30 个输出。但如果你有多个 GPU,那么你可以获得这样的结 果。

Let’s use 2 GPUs!
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

Let’s use 3 GPUs!
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])

Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

Let’s use 8 GPUs!
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

  • 24
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
你可以使用PyTorch的`DataParallel`来实现单机训练模型。`DataParallel`会自动将模型复制到每个可用的GPU并行计算,并在反向传播时进行梯度的累积和同步。 下面是一个简单的示例代码,展示了如何使用`DataParallel`来进行单机训练模型: ```python import torch import torch.nn as nn from torch.utils.data import DataLoader # 定义模型 class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.fc = nn.Linear(10, 1) def forward(self, x): return self.fc(x) # 创建模型实例 model = MyModel() # 设置设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) # 多训练 if torch.cuda.device_count() > 1: model = nn.DataParallel(model) # 使用DataParallel包装模型 # 定义数据集和数据加载器 dataset = YourDataset() # 自定义数据集 dataloader = DataLoader(dataset, batch_size=64, shuffle=True) # 定义优化器和损失函数 optimizer = torch.optim.SGD(model.parameters(), lr=0.001) criterion = nn.MSELoss() # 训练过程 for epoch in range(num_epochs): for inputs, labels in dataloader: inputs = inputs.to(device) labels = labels.to(device) # 前向传播 outputs = model(inputs) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}") # 保存模型 torch.save(model.state_dict(), "model.pth") ``` 在上述示例中,如果有多个可用的GPU,则`DataParallel`会自动将模型复制到每个可用的GPU并行计算。你可以通过`torch.cuda.device_count()`函数来检查可用的GPU数量。在训练过程中,你只需要像单训练一样使用模型即可,`DataParallel`会自动处理数据和梯度的同步。 请确保你的代码在使用`DataParallel`之前将模型移动到正确的设备上,并在训练过程中将数据和标签移动到相同的设备上。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值