数据分析——关于数据的加载、存储和文件的格式

关于数据的加载、存储和文件的格式

主要使用pandas

文本格式数据的读写

将表格性数据读取为pandas中的DataFrame对象。其中的read_csvread_table用的最多。

pandas常见的解析函数:
在这里插入图片描述

这些函数将文本数据转换为pandas便于pandas处理的DataFrame对象,这些函数的可选参数主要有以下几种:

索引:

  • 可以将一个或多个列作为返回的DataFrame,从文件或用户获取列名,也可以没有列名

类型推断和数据转换:

  • 包括用户自定义的值转换和自定义的缺失值符号列表

日期时间解析:

  • 包括组合功能,也包括将分散在多个列上的日期和时间信息组合成结果中的单个列

迭代:

  • 支持对大型文件的分块迭代

未清洗的数据问题:

  • 跳过行、页脚、注释以及其他次要数据,比如使用逗号分隔千位的数字
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页