奇异值分解SVD的详细步骤和手算例子


奇异值分解(singular value decomposition,SVD),已经成为矩阵计算中最有用和最有效的工具之一,并且在最小二乘问题、最优化、统计分析、信号与图像处理、系统理论与控制等领域得到广泛应用。

基本原理

按定义来,任何一个矩阵都可以分解成下面的形式:

A = U Σ V T A=U \Sigma V^T A=UΣVT

那SVD要求的就是 U U U Σ \Sigma Σ V T V^T VT,其中 U U U V V V是标准正交基(orthonormal),也即
U T U = I , V T V = I U^T U=I, V^T V=I UTU=I,VTV=I

他们的求法如下:

  1. U U U A A T AA^T AAT的特征向量张成的一个矩阵
  2. V V V A T A A^TA ATA的特征向量张成的一个矩阵
  3. Σ \Sigma Σ A A T AA^T AAT或者 A T A A^TA ATA的特征值的平方根

其证明如下:
在这里插入图片描述

手算例子

所以从上面看下来,SVD分解就两步:

  1. A A T AA^T AAT的特征向量(构成的矩阵就是 U U U)和特征值(默认由大到小排列,然后要求根号,得到的就是 Σ \Sigma Σ
  2. A T A A^TA ATA的特征向量(构成的矩阵就是 V V V

举个例子:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

互联网民工蒋大钊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值