week7

本文介绍了处理过拟合的方法,包括特征选择和正则化。正则化通过在代价函数中添加参数惩罚项来减小高次项权重,避免模型复杂度过高。线性回归和逻辑回归中都应用了正则化,通过梯度下降法或正规方程求解。合适的正则化参数λ能平衡模型复杂度和泛化能力,防止欠拟合。
摘要由CSDN通过智能技术生成

7.1 过拟合的问题

处理过拟合问题(over-fitting):

  • 丢弃一些无用特征

  • 正则化(regularization)

7.2 代价函数

对于模型 h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 2 + θ 3 x 3 3 + θ 4 x 4 4 h_\theta(x)=\theta_0+\theta_1x_1+\theta_2x_2^2+\theta_3x_3^3+\theta_4x_4^4 hθ(x)=θ0+θ1x1+θ2x22+θ3x33+θ4x44​,由于高次项导致过拟合的产生,如果能让这些高次项的系数接近0的话,可以很好的拟合。所以要减少这些参数的值,这是正则化的基本方法。如果要减少 θ 3 \theta_3 θ3 θ 4 \theta_4 θ4的大小,修改代价函数,在其中 θ 3 \theta_3 θ3+ θ 4 \theta_4 θ4​设置惩罚。修改后的函数如下:

m i n θ 1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + 1000 θ 3 2 + 1000 θ 4 2 ] min_\theta \frac{1}{2m}[\sum\limits_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})^2+1000\theta_3^2+1000\theta_4^2] minθ2m1[i=1m(hθ(x(i))y(i))2+1000θ32+1000θ42]

通过这样的代价函数选择的 θ 3 \theta_3 θ3 θ 4 \theta_4 θ4对预测结果的影响比之前小很多。假如我们有很多的特征,我们并不知道哪些特征需要惩罚,我们将对所有的特征进行惩罚,代价函数如下: J ( θ ) = 1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 ] J(\theta)=\frac{1}{2m}[\sum\limits_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})^2+\lambda\sum\limits_{j=1}^n\theta_j^2] J(θ)=2m1[i=1m(hθ(x(i))y(i))2+λj=1nθj2]

其中 λ \lambda λ​又称为正则化参数(Regularization Parameter)。

不对 θ 0 \theta_0 θ0进行惩罚

如果选择的正则化参数 λ \lambda λ过大,则会把所有的参数都最小化,导致模型变成 h θ ( x ) = θ 0 h_\theta(x)=\theta_0 hθ(x)=θ0,造成欠拟合。所以, λ \lambda λ要取一个合理值。

7.3 正则化线性回归

对于线性回归的求解,之前推导了两种学习算法:一种基于梯度下降,一种基于正规方程

正则化线性回归的代价函数为:

J ( θ ) = 1 2 m [ ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 ] J(\theta)=\frac{1}{2m}[(h_\theta(x^{(i)})-y^{(i)})^2+\lambda\sum\limits_{j=1}^n\theta_j^2] J(θ)=2m1[(hθ(x(i))y(i))2+λj=1nθj2]

如果使用梯度下降法令这个代价函数最小化,

因为我们未对 θ 0 \theta_0 θ0进行正则化,所以梯度下降算法分2种情形:

r e p e a t repeat repeat u n t i l until until c o n v e r g e n c e convergence convergence{

θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) ) \theta_0:=\theta_0-\alpha\frac{1}{m}\sum\limits_{i=1}^m((h_\theta(x^{(i)})-y^{(i)})x_0^{(i)}) θ0:=θ0αm1i=1m((hθ(x(i))y(i))x0(i))

θ j : = θ j − α [ 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) + λ m θ j ] \theta_j:=\theta_j-\alpha[\frac{1}{m}\sum\limits_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}+\frac{\lambda}{m}\theta_j] θj:=θjα[m1i=1m(hθ(x(i))y(i))xj(i)+mλθj]

f o r j = 1 , 2 , ⋯   , n for j=1,2,\cdots,n forj=1,2,,n

}

我们同样利用正规方程来求解正则化线性回归模型,方法如下:

7.4 正则化的逻辑回归模型

针对逻辑回归问题,之前学过2种优化算法:梯度算法和高级优化算法。

代价函数加入正则化表达式,得到代价函数:

J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) l o g ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) ] + λ 2 m ∑ j = 1 n θ j 2 J(\theta)=\frac{1}{m}\sum\limits_{i=1}^m[-y^{(i)}log(h_\theta(x^{(i)}))-(1-y^{(i)})log(1-h_\theta(x^{(i)}))]+\frac{\lambda}{2m}\sum\limits_{j=1}^n\theta_j^2 J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]+2mλj=1nθj2

最小化该代价函数,通过求导,得到梯度下降算法为:

r e p e a t repeat repeat u n t i l until until c o n v e r g e n c e convergence convergence{

θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) \theta_0:=\theta_0-\alpha\frac{1}{m}\sum\limits_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_0^{(i)} θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i)

θ j : = θ j − α [ 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) + λ m θ j ] \theta_j:=\theta_j-\alpha[\frac{1}{m}\sum\limits_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}+\frac{\lambda}{m}\theta_j] θj:=θjα[m1i=1m(hθ(x(i))y(i))xj(i)+mλθj]

f o r j = 1 , 2 , ⋯   , n for j=1,2,\cdots,n forj=1,2,,n

}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值