python:matplotlib.pyplot绘制箱线图并 检测异常值(基础一)

本文介绍了如何使用Python的pandas和matplotlib库绘制箱线图,检测数据集(data01.xls)中的异常值,并通过计算四分位数和四分位距来识别并移除潜在的异常值。通过箱线图展示和统计分析,提升数据质量理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在数据处理中,箱线图常用来检测异常值。

数据文件data01.xls

1.绘制箱线图使用boxplot()函数

import pandas as pd
import matplotlib.pyplot as plt

# 读取excel文件
file_01 = pd.read_excel("data01.xls")

fig = plt.figure(figsize=(16, 8))
d1 = file_01['变量1']
d2 = file_01['变量2']
d3 = file_01['变量3']
d4 = file_01['变量4']

label = '变量1', '变量2', '变量3', '变量4'
plt.boxplot([d1, d2, d3, d4], labels=label)  # label设置横轴每个箱图对应的横坐标
plt.xticks(fontproperties='KaiTi')
plt.xlabel('变量', fontproperties='KaiTi')
plt.ylabel('变量值', fontproperties='KaiTi')

plt.show()

### Python 数据分析可视化 `matplotlib.pyplot` 使用教程 #### 导入库准备数据 为了使用 `matplotlib.pyplot` 进行数据分析和可视化,首先需要导入必要的库。这里展示如何创建简单的折线图。 ```python import matplotlib.pyplot as plt data = [1, 2, 3, 4, 5, 4, 2, 4, 6, 7] plt.plot(data) # 调用 plot 方法绘制折线图[^1] plt.xlabel('X轴标签') # 添加 X 轴标签 plt.ylabel('Y轴标签') # 添加 Y 轴标签 plt.title('简单折线图示例') # 设置图表标题 plt.show() # 显示图像窗口 ``` 这段代码展示了基本的数据可视化流程:先定义要可视化的数据集;接着调用相应的方法来设置坐标轴名称、图表标题等属性;最后通过 `show()` 函数显示所生成的图形界面。 #### 绘制多种类型的图表 除了基础的折线图外,还可以利用该库轻松制作更多种类的统计图表,比如柱状图、饼图以及箱型图等。 对于想要在同张图片里呈现多个不同系列的情况,可以传递二维数组给绘图函数作为输入参数: ```python import numpy as np x_values = np.random.rand(10) y_values_1 = x_values * 2 + 1 y_values_2 = -x_values ** 2 + 3 fig, ax = plt.subplots() ax.scatter(x_values, y_values_1, c='blue', label="Line 1") # 散点图 ax.plot(x_values, y_values_2, 'r-', lw=2, label="Curve 2") # 折线图 ax.legend(loc='best') plt.grid(True) plt.show() ``` 上述例子中不仅包含了散点图与折线图的同时展现方式,还加入了网格线辅助阅读,且设置了图例帮助区分不同的线条或标记样式[^2]。 当涉及到更复杂的统计数据表示形式时,如箱型图,则可以通过调整特定选项来自定义外观效果: ```python np.random.seed(19680801) all_data = [np.random.normal(0, std, size=100) for std in range(1, 4)] labels = ['A', 'B', 'C'] colors = ['#D4EFDF', '#EDEDED', '#FAD7A0'] box_properties = dict(linewidth=2, color='black') flierprops = dict(marker='o', markerfacecolor='#e7298a', markersize=8, linestyle='none') medianprops = {'linestyle': '-', 'linewidth': 2, 'color': 'firebrick'} meanpointprops = {'marker':'D', 'markeredgecolor':'green', 'markerfacecolor':'forestgreen'} bplot = plt.boxplot(all_data, labels=labels, patch_artist=True, boxprops=dict(facecolor="#ccffcc"), flierprops=flierprops, medianprops=medianprops, meanprops=meanpointprops, showcaps=False, showmeans=True) for patch, color in zip(bplot['boxes'], colors): patch.set_facecolor(color) plt.xticks(rotation=45) plt.tight_layout() plt.show() ``` 此部分代码片段说明了怎样配置箱型图的各项特性,包括但不限于背景填充色(`patch_artist`)异常值符号风格(`flierprops`)、平均数指示器形状(`meanprops`)等等[^3]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值