不懂异或?一文详解移位操作符,位操作符

 一、移位操作符

        <<   >>

在介绍移位操作符前先学习一下二进制的表示方法,二进制表示方法有3种:

原码,反码,补码

正数原码,反码,补码相同

负数原码,反码,补码需要计算

例子:5的二进制码

0000 0000 0000 0000 0000 0000 0000 0101        原码

0000 0000 0000 0000 0000 0000 0000 0101        反码

0000 0000 0000 0000 0000 0000 0000 0101        补码

第一位数表示正负。0为正数,1为负数。

          -5的二进制码

1000 0000 0000 0000 0000 0000 0000 0101        原码

1111  1111  1111  1111 1111  1111  1111  1010        反码 (符号位不变,其他位按位取反)

1111  1111  1111  1111 1111  1111  1111  1011        补码(最后一位+1)

整数在内存中存的是二进制的补码。回到移位操作符。

左移

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>

int main()
{
	int a = 5;
//5的补码     0000 0000 0000 0000 0000 0000 0000 0101 
	a = a<< 1;
	printf("%d", a);
	return 0;
}

上段代码将 5 的补码左移一位,再最后一位补上0

 

 

 此时二进制补码变成了 2³+2=8+2=10 。  

输出结果

10

 这次对-5左移一位

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>

int main()
{
	int a = -5;
    //-5 的补码1111  1111  1111  1111 1111  1111  1111  1011
	a = a<< 1;
	printf("%d", a);
	return 0;
}

打印时,将打印原码,因此会先将补码转成原码。正数因为源反补都相同,不需要再换算。

        计算发现 -5左移1位原码就是 - (2³+2)= -10 ,打印结果自然也是-10接下来介绍右移,右移分为算术右移和逻辑右移。

右移

算术右移:右边丢弃,左边补符号位

逻辑右移:右边丢弃,左边补0 。 

+5 -5 的原反补码及 对补码算术右移1位并转为原码

 截图时截少了,左边的0没截到

代码:

	int a = -5;
	a = a >> 1;
	printf("%d", a);

 结果:

-3

右移运算是算术还是逻辑右移,是取决于编译器的,此次结果表明当前编译器采用的是算术右移

不是-2的结果也说明不能用移位运算取代 "/2" 运算。

注意:无法移动负数位,标准里未定义。

 a>>>-1 //error

二、 位操作符

        | & ^ ~

        &按位与:类似且的逻辑,二进制按位运算,前后两个运算数同时为“1”得“1”。 

        | 按位或:前后两个运算数只要其一为“1”,结果就为“1”。

        ^按位异或:前后两个运算数相同为0,相异为1。

        ~按位取反:对一个数的二进制按位取反。

& 按位与

程序

    int a = -3;
	int b = 5;
	int c = a & b;
	printf("%d", c);

同样先算出a,b的补码

    a=-3,b=5
    a 10000000000000000000000000000011 原
	a 11111111111111111111111111111100 反
	a 11111111111111111111111111111101 补
    b 00000000000000000000000000000101 补

按位与 a&b,每位两者都为1,才得1,否则0, 得:

	a 11111111111111111111111111111101 补
    b 00000000000000000000000000000101 补
    c 00000000000000000000000000000101 补

因为打印时会打印原码,这里再将补码转为原码,即:

	因为c为正数所以正反补都相同
    c 00000000000000000000000000000101 补
	c 00000000000000000000000000000101 反
	c 00000000000000000000000000000101 原

运行结果

5

| 位或

同理

程序

    int a = -3;
	int b = 5;
	int c = a | b;
	printf("%d", c);

运行结果

-3

^ 按异或

        相同为0,相异为1。

程序

void test4() {
	int a = -3;
	int b = 5;
	int c = a ^ b;
	printf("%d", c);
}

运算过程

    a=-3,b=5
    a 10000000000000000000000000000011 原↓
	a 11111111111111111111111111111100 反↓
	a 11111111111111111111111111111101 补
    b 00000000000000000000000000000101 补
    c 11111111111111111111111111111000 补//异或运算:相同为0,相异为1
                ↓ 转原码打印
    c 11111111111111111111111111110111 反
    c 10000000000000000000000000001000 原//对应十进制的-8

运行结果

-8

异或特殊的两种用法,任何数与0异或是它本身;任何数与它本身异或是0。

程序

	int a = 3;
	printf("%d\n", a ^ 0);
	printf("%d", a ^ a);

运行结果

3
0

运算过程

                 相同取0 相异取1
 a   000000000000000000000000000000000011 //原
 a   111111111111111111111111111111111100 //反
 a   111111111111111111111111111111111101 补
 0   000000000000000000000000000000000000 补
a^0  111111111111111111111111111111111101 补

 a   111111111111111111111111111111111101 补
 a   111111111111111111111111111111111101 补
a^a  000000000000000000000000000000000000 补

 可以发现a^0=a,a^a=0 。由此又延伸出一种很常用的算法,异或一组数据就能得到其中不成对的数字。

对1234321这组数据异或

        1^2^3^4^3^2^1=4

成对的数字相抵消为0,最后剩下一个4与0异或,就是4本身。

这里能听懂,那这道题对你来说那必是轻而易举(~ ̄▽ ̄)~力扣

有了这样的基础,你甚至能拿两个变量做更nb的操作——无需第三个变量就能交换两个变量的值

	int a = 3;
	int b = 5;
	a = a ^ b;
	b = a ^ b;//此时a = a ^ b;
	a = a ^ b;//此时b=a^b^b =a,也就是a =a^b^a 最终等于b
	printf("a=%d b=%d", a, b);

运行结果

a=5 b=3

当然这里也可以用求和的方式实现交换,但这种方法有缺陷的,当a ,b的值非常大时,他们的和就会溢出,最终得不到想要的值,算权宜之计。

~  按位取反

        将补码全部取反,打印的时候同样要转换成原码打印。 

1.下面的程序将二进制某位从0变成1又从1变成0,1变成0的运算用到“~”取反,具体过程看注释。

000000000000000000000000000000001011 
                    ↓            ↑目标位
000000000000000000000000000000001111
                    ↓            ↑目标位
000000000000000000000000000000001011 

程序

    //~取反
    //000000000000000000000000000000001011
	int a = 11;
	a |= (1 << 2);//对1左移2位
    //000000000000000000000000000000001011     a
    //000000000000000000000000000000000100   (1 << 2)
    //000000000000000000000000000000001111  进行位或运算得到结果
	printf("变形:%d\n", a);
    
	a &= ~(1 << 2);
    //000000000000000000000000000000001011      a
    //111111111111111111111111111111111011   ~(1 << 2)
    //000000000000000000000000000000001011  进行位与运算得到结果
	printf("还原:%d\n", a);

 运行结果

变形:15
还原:11

2. 可以用来终止获取输入  while(~scanf() )

        scanf 读取失败时返回 -1,而-1的补码是32/64位1,取反后为0,即返回假,所以条件终止。

-1    1111 1111 1111 1111 1111 1111 1111 1111
 0    0000 0000 0000 0000 0000 0000 0000 0000 

-看到这里应该懂了8,希望本文能帮助你理解位、移位操作符

-什么?你说还不懂(*゜ー゜*)

-欢迎在评论区留言问题~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值