- 博客(36)
- 收藏
- 关注
原创 计算和比较不同图像重建方法之间的视觉相似性,使用 LPIPS(Learned Perceptual Image Patch Similarity)度量来评估。
计算和比较不同图像重建方法之间的视觉相似性,使用 LPIPS(Learned Perceptual Image Patch Similarity)度量来评估。
2024-10-29 21:04:54 282
原创 UltraSR: Spatial Encoding is a Missing Key for Implicit Image Function-based Arbitrary-Scale Super-R
最近NeRF等相关隐式神经表示方法的成功为连续图像表示开辟了一条新的道路,像素值不再需要从存储的离散二维数组中查找,而是可以从连续空间域上的神经网络模型中推断。尽管最近的LIIF工作已经证明这些新方法在任意尺度的超分辨率任务上都能取得很好的性能,但由于对高频纹理的预测不准确,它们的升尺度图像经常会出现结构失真。其中,s为目标像素在HR域的值,vr为参考位置在LR域的特征向量,δ x为目标像素x与参考位置xr的归一化距离。在本节中,我们将讨论UltraSR的局限性以及我们的工作可以扩展的三个潜在的未来方向。
2024-10-29 20:39:26 1076
原创 【Super-resolved q-space learning of diffusion MRI】
目前基于学习的方法所使用的d MRI数据来源于特定的采集协议,因此本文提出的q-空间超分辨率方法不能直接应用于一些不同协议的临床数据集。由于高质量的异常数据需要耗费大量的精力和时间来获取,因此对其在不同患者群体中的普遍适用性的评估仍是未来的研究方向。在具有多样性和良好分布的训练数据集的情况下,所提出的方法可能能够泛化多种情况,因为足够的样本可以包括各种类型的组织结构。在未来的工作中,我们将继续优化我们的方法,以提高大脑边缘区域的估计精度,并探索在临床疾病数据中重建病变部位的可行性。
2024-10-25 20:49:12 1021
原创 【Angular Super-Resolution in Diffusion MRI with a 3D Recurrent Convolutional Autoencoder】
关键词: 扩散MRI, 深度学习, 角度超分辨率, 循环CNN, 图像合成弥散MRI(dMRI)分析技术的进步继续推动通过非侵入性成像模式可以实现的界限(Zhang等人,2012;拉菲尔特等人,2017;德雷克-P·埃雷斯等人,2018 年)。然而,获取这些更先进的技术所需的高角分辨率扩散成像(HARDI)是一项挑战。HARDI 数据需要采集通常三十个或更多的扩散方向,通常在几个b值(多壳)下,才能有效地使用这些技术。因此,由于获取这种高分辨率数据集的时间限制,从这些进步中受益在临床上是不可行的(HARDI
2024-10-25 20:11:13 961
原创 【INR-V: A Continuous Representation Space for Video-based Generative Tasks】
Comment: Published in Transactions on Machine Learning Research (10/2022);https://openreview.net/forum?id=aIoEkwc2oBINR-V:基于视频的生成任务的连续表示空间摘要:生成视频是一项复杂的任务,它是通过逐帧生成一组时间连贯的图像来完成的。这将视频的表现力限制为仅对各个视频帧进行基于图像的操作,需要网络设计才能在底层图像空间中获得时间相干的轨迹。我们提出了 INR-V,一种视频表示网络,可以为基
2024-10-22 10:04:27 1059
原创 使用python根据参数量(GFLOPs)、Flops(用气泡大小表示)和PSNR绘制气泡图
如果你的数据存储在文件中,你可能需要使用 pandas 等库来读取数据,然后按照上述方法绘制图表。如果需要帮助处理具体的数据文件,请提供更多的信息或文件示例。这个示例假设你的数据已经按照 (模型名称, 参数量, PSNR, Flops) 的格式组织好。请根据你的实际数据调整。
2024-10-21 15:42:53 644
原创 如何在visio文本中插入上标或下标
选中要成为上标的文字,ctrl+shift+“=”选中要成为下标的文字,ctrl+“=”斜体快捷键,ctrl+“I”加粗快捷键,ctrl+“B”
2024-10-14 10:57:13 637
原创 2024年诺贝尔物理学奖颁发给了机器学习与神经网络领域的研究者,这是历史上首次出现这样的情况
这项奖项原本只授予对自然现象和物质的物理学研究作出重大贡献的科学家,如今却将全球范围内对机器学习和神经网络的研究和开发作为了一种能够深刻影响我们生活和未来的突出成果。物理学不仅仅是关于物质和自然现象的研究,它也涉及到信息、复杂系统和计算的理论基础,这些都是机器学习和神经网络的核心概念。然而,这一决定也可能引发一些讨论,比如关于诺贝尔奖的评选标准是否应该扩展到包括技术应用和跨学科研究,以及如何在保持物理学传统研究领域的同时,认可新兴领域的贡献。这可能会对未来的科学研究和技术创新产生深远的影响。
2024-10-11 19:29:23 134
原创 检查一个文件夹是否存在,如果不存在则创建它
在Python中,如果您想检查一个文件夹是否存在,如果不存在则创建它,您可以使用。默认会创建所有中间目录(如果它们不存在的话),这就像在Unix中使用。如果文件夹已经存在,它将打印一条消息说明文件夹已存在。这段代码首先定义了您想要检查的文件夹路径。,这样如果目录已存在,它不会抛出一个错误。这样,即使文件夹已经存在,代码也不会抛出异常。函数来创建新文件夹。如果您不想创建中间目录,可以传递。来检查这个路径是否存在。函数来检查路径是否存在,以及。,说明文件夹不存在,接着使用。
2024-10-11 12:52:45 346
原创 dipy 1.9.0 requires numpy>=1.22.4, but you have numpy 1.19.5 which is incompatible.
请注意,升级或降级库版本可能会影响其他依赖于这些库的项目的兼容性,因此在进行任何更改之前,请确保备份您的工作环境。请根据您的具体情况选择合适的解决方案,并在进行任何操作前备份您的环境,以免造成不必要的麻烦。:如果错误消息指出了特定的包版本冲突,尝试手动安装一个满足所有依赖条件的版本。:创建一个新的虚拟环境,并在其中安装所需的包,有时可以避免全局环境中的包版本冲突。或其他依赖 NumPy 的库到一个与您当前 NumPy 版本兼容的版本。的官方文档,了解每个版本的特性和兼容性要求,以便做出更合适的版本选择。
2024-10-10 21:21:14 274
原创 cannot import name ‘__all__‘ from ‘numpy.linalg‘ (G:\ProgramData\Anaconda3\Lib\site-packages\numpy\l
在提问时,提供您的操作系统、Python版本、NumPy版本和SciPy版本等信息将有助于他人更快地帮助您解决问题。您可以尝试运行您的代码时提供更多的日志输出,或者查看完整的错误堆栈跟踪。:您的Python环境可能存在问题,比如有多个版本的NumPy或SciPy库冲突,或者某些库损坏。:在您的代码中,检查是否有不必要的导入语句,或者是否有导入顺序可能导致的问题。:确保您的Python版本与您的NumPy和SciPy版本兼容。:您的NumPy版本可能存在问题,或者与SciPy版本不兼容。的属性时出现了问题。
2024-10-10 21:00:00 899
原创 用python的代码实现使用MILP方法进行下采样
此外,目标函数和约束条件可能需要根据你的具体问题进行调整。这个示例尝试最大化所有选择样本之间的最小距离,但你可能有不同的目标(例如,最小化最大距离或最大化覆盖范围)。在实际应用中,你可能还需要考虑其他因素,如b值、梯度方向之间的相关性等。此外,Gurobi是商业软件,需要购买许可证或使用教育许可证。在Python中实现使用混合整数线性规划(MILP)方法进行下采样,你可以使用。应该是一个Nx3的矩阵,每行代表一个梯度方向。是一个数组,表示从每个壳层中选择的样本数量。请注意,这个示例中的。
2024-10-10 08:15:00 176
原创 使用PuLP库进行Q空间单壳层下采样的具体代码实现
我们将定义一个MILP问题,目标是选择一组代表性的梯度方向,以均匀地覆盖整个球面。首先,确保你已经安装了PuLP库。如果没有安装,可以通过以下命令安装:代码实现代码说明问题定义:决策变量:目标函数:约束条件:求解问题:获取结果:这个示例代码展示了如何使用PuLP库进行Q空间单壳层下采样。你可以根据具体需求调整目标函数和约束条件。
2024-10-09 20:53:34 223
原创 【DMRI】如何利用dipy进行dmri的patch2self去噪处理,并将去噪后的数据存储为nii的格式
patch2self是目前dMRI数据去噪比较好用的方法,去噪效果较好,并且在cpu上就可以运行,dipy提供了现成的函数接口。
2024-10-09 20:15:11 245
原创 【DMRI】如何安装,以及如何使用来读取dmri数据
DIPY是一个用于分析扩散磁共振成像(dMRI)数据的Python库。它提供了多种工具和算法用于dMRI数据的加载、处理、重建、跟踪和可视化。DIPY是开源的,并且是神经影像学分析中使用广泛的软件之一。DIPY可以通过pip或conda进行安装。更多详细信息和高级功能,建议参考DIPY的官方文档。
2024-10-09 19:48:28 288
原创 【DIPY】在Python中,可以使用DIPY库来实现基于b向量的下采样策略。
请根据你的具体需求调整上述策略。例如,你可能想要基于b向量的方向分布来选择一个更均匀分布的子集,或者使用更复杂的方法来确保下采样后的b向量能尽可能多地覆盖整个q空间。这段代码首先计算了所有b向量的长度,并选择了长度最大的50个b向量。然后,它使用这些b向量创建了一个新的梯度表,这个梯度表可以用于后续的dMRI数据分析。在Python中,可以使用DIPY库来实现基于b向量的下采样策略。
2024-10-09 19:40:24 514
原创 在Python中实现扩散磁共振成像(dMRI)的q空间下采样策略
在Python中实现扩散磁共振成像(dMRI)的q空间下采样策略,可以使用一些专业的库,如DIPY和QSIPrep。
2024-10-09 19:30:46 389
原创 一些有效的q空间下采样策略
在不同的b值下进行采样,通常包括一个低b值的基态成像和一个或多个不同b值的扩散编码成像,以获得不同尺度的组织结构信息。:根据预先定义的规则或先前的知识,选择对组织结构特征最敏感的q空间区域进行采样,以提高数据的有效性。:这种策略涉及在q空间中均匀分布采样点,确保各个方向上的采样均衡,从而获得较为全面的组织结构信息。:通过减少采样点的数量来缩短扫描时间,例如使用随机采样或者优先选择对图像重建影响较大的采样点。:通过精心设计的q空间采样轨迹,结合先进的重建算法,以提高成像的速度和质量。
2024-10-09 19:29:03 226
原创 Learning Continuous Image Representation with Local Implicit Image Function
<p>Learning Continuous Image Representation with Local Implicit Image Function(阅读笔记)11.03</p><p><img src="https://img2023.cnblogs.com/blog/1689519/202309/1689519-20230913153609198-735566268.png" /></p><p>局部隐式图像函数(LIIF)
2024-09-28 22:06:54 957
原创 min_dists = np.amin(sph_dists[:, pick_mask], axis=1)
在这个例子中,np.amin(sph_dists[:, pick_mask], axis=1)计算的是sph_dists数组中每一行(由:表示,即所有行)与pick_mask所指示的列之间的最小球面距离。axis=1指定了函数沿着行的方向(即水平方向)进行操作,因此结果min_dists是一个一维数组,其长度与sph_dists的行数相同,每个元素都是对应行与pick_mask指示列之间的最小球面距离。pick_mask是一个布尔数组或整数数组,用于从sph_dists的列中选择特定的子集。
2024-09-27 14:54:24 169
原创 【文献阅】Transformer-empowered Multi-scale Contextual Matching and Aggregation for Multi-contrast MRI Su
磁共振成像(MRI)是一种重要的医学影像技术,它能在不引起电离辐射的情况下提供组织结构和功能的清晰信息。然而,由于成像系统的本质缺陷和身体某些部位(如腹部)的气颤,在临床获得高分辨率(HR) MR图像具有挑战性。此外,长时间的采集过程可能会给患者带来不适,引入运动伪影,从而影响图像质量。超分辨率(SR)重建是一种很有前途的不需要升级硬件设施就能提高MR图像质量的方法。
2024-09-27 12:32:36 983
原创 ESRT: 集轻量高效于一体的单图超分网络
随着深度学习的发展,单幅图像超分辨率(SISR)技术取得了长足的进步。近来越来越多的研究人员开始探索Transformer在计算机视觉任务中的应用。然而,Vision Transformer巨大的计算成本和高GPU内存占用问题阻碍了其脚步。在本文中,提出了一种用于SISR的新型高效超分辨率Transformer(ESRT)。ESRT是一种混合模型,由轻型CNN主干网(LCB)和轻型Transformer主干网(LTB)组成。其中,LCB可以动态调整特征图的大小,以较低的计算成本提取深层特征。
2024-09-27 12:06:29 1258
原创 ERROR: Cannot uninstall ‘PyYAML‘. It is a distutils installed project and thus we cannot accurately
如果上述方法都不能解决问题,你可以查阅PyYAML的官方文档,或者在Stack Overflow、GitHub等社区中搜索类似的问题和解决方案。的文件都安装在哪里,并且确定可以安全地删除它们,你可以手动删除这些文件。:有时,Python的包缓存可能会导致问题。在虚拟环境中,你可以安装任何你需要的包,而不会影响系统级的Python环境。:为了避免与系统级的Python包发生冲突,可以考虑使用虚拟环境(如。但请注意,这可能会导致系统不稳定或数据丢失,因此请谨慎使用。有时,旧版本的这些工具可能会导致兼容性问题。
2024-09-26 11:18:57 814
原创 2024年中国研究生数学建模竞赛E题《高速公路应急车道紧急启用模型》
构建合理启用高速公路应急车道模型,为决策者提供临时启用应急车道决策的理论依据,是一个复杂但至关重要的任务。同时,通过不断的数据验证和模型优化,可以确保模型的有效性和准确性。设定拥堵阈值(如车流密度超过某值、速度低于某值),当预测结果达到或超过这些阈值时,认为可能出现拥堵。选用基于交通流理论的模型(如宏观模型中的LWR模型或其改进版),结合道路实际情况进行适当调整。在实际发生拥堵的时间段内,对比模型预测的交通状态与实际视频观测到的交通状态。调整模型参数(如拥堵阈值、预测时间窗口等),观察模型预测结果的变化。
2024-09-22 12:39:21 1421
原创 2024研究生华为杯数学建模大赛A题部分解析,后面会给出更多的解析
根据前面我给出的解题思路,现在给出一些问题一,和问题二的个人思路和具体的代码实现,仅是个人拙见,后面!!!!!
2024-09-21 10:56:16 368
原创 2024研究生华为杯数学建模大赛C题
解决这些问题需要综合运用数据预处理、特征工程、机器学习、统计分析和优化算法等方法。通过建立数学模型和开发算法,可以有效地预测和优化磁性元件的磁芯损耗,为磁性元件的设计和电力电子技术的发展提供支持。
2024-09-21 10:24:45 1010
原创 2024研究生华为杯数学建模大赛B题
解决这些问题需要综合运用数据预处理、特征工程、机器学习、统计分析和模型评估等方法。通过建立数学模型和开发算法,可以有效地预测WLAN系统的吞吐量,为WLAN系统优化提供决策支持。此外,还需要考虑模型的泛化能力和实时性,以确保模型在实际部署中的有效性。
2024-09-21 10:22:55 314
原创 2024研究生华为杯数学建模大赛D题《大数据驱动的地理综合问题》解题思路
可以建立暴雨形成的物理模型,考虑地形和气候因素的综合作用。这条线也是水田和旱地分布分界线,一月份0℃等温线,水稻和小麦种植分界线,亚热带与暖温带的分界线,湿润与半湿润的分界线,亚热带季风气候与温带季风气候的分界线。根据第一问中对 1990 - 2020 年间中国范围内降雨量和土地利用 / 土地覆被变化的描述性统计结果,分析降雨量的变化趋势和空间分布特征,以及土地利用 / 土地覆被类型的变化情况。例如,通过改变地形参数或气候参数,观察极端天气事件的强度和发生频率的变化,从而确定地形和气候因素的重要性。
2024-09-21 10:21:13 1414
原创 2024研究生华为杯数学建模大赛E题
解决这些问题需要综合运用交通工程、统计学、机器学习和决策支持系统的知识。通过建立数学模型和开发算法,可以有效地预测和缓解交通拥堵,优化应急车道的使用,为高速公路管理提供科学依据。
2024-09-21 10:18:35 755
原创 2024研究生华为杯数学建模大赛F题《X射线脉冲星光子到达时间建模》题目解析全部
脉冲星辐射的X射线光子信号被视为平行光。忽略太阳系天体的自转和扁率。已知光子到达卫星的时刻对应的MJD为57062.0(TT时间尺度)。已知卫星在GCRS中的坐标位置。几何传播时延(Roemer时延):光子在真空中从脉冲星传播到航天器和太阳系质心的时间差。Shapiro时延:光子在通过太阳引力场时由于引力弯曲路径所产生的额外时间延迟。引力红移时延:光子在强引力场中频率降低,波长变长,导致的时间延迟。动钟变慢效应:航天器在高速运动中的相对论性时间膨胀效应。脉冲星自行。
2024-09-21 10:14:21 2169
A Survey on Evolutionary Computation for Computer Vision
2024-09-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人