自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(56)
  • 收藏
  • 关注

原创 2024研究生华为杯数学建模大赛F题《X射线脉冲星光子到达时间建模》题目解析全部

脉冲星辐射的X射线光子信号被视为平行光。忽略太阳系天体的自转和扁率。已知光子到达卫星的时刻对应的MJD为57062.0(TT时间尺度)。已知卫星在GCRS中的坐标位置。几何传播时延(Roemer时延):光子在真空中从脉冲星传播到航天器和太阳系质心的时间差。Shapiro时延:光子在通过太阳引力场时由于引力弯曲路径所产生的额外时间延迟。引力红移时延:光子在强引力场中频率降低,波长变长,导致的时间延迟。动钟变慢效应:航天器在高速运动中的相对论性时间膨胀效应。脉冲星自行。

2024-09-21 10:14:21 3321 1

原创 【快速幂】最详细,生动的讲解

的问题(例如RSA加密、哈希碰撞检测等)。当指数(b)达到(1e18)级别时,传统暴力连乘(时间复杂度(O(b)))会直接超时。,深刻理解其二进制分解与倍增思想,能轻松应对各类变种问题(矩阵快速幂、快速乘等)。代码中的每一步都经过千锤百炼,务必做到。:(3^{13} \mod 7 = 3),验证正确(实际值1594323,1594323 ÷ 7余3)。,将时间复杂度压缩到(O(\log b)),彻底解决大指数计算的效率瓶颈。在ACM竞赛中,我们常遇到形如。:快速幂是算法竞赛中的。

2025-03-30 15:29:53 456

原创 快速排序不啦不啦

想象你有一堆杂乱的书需要按编号排列。快速排序的做法是:1️⃣ 随便选一本书作为"基准书"2️⃣ 把比它小的放左边,比它大的放右边3️⃣ 对左右两堆书重复这个过程作用:生成[min,max]范围内的随机数类比:闭着眼睛从书堆里随机摸一本书假设要排序数组如果总是选第一个元素,遇到已排序数组时效率会退化成O(n²)。随机选择能避免最坏情况。--j++i当i和j相遇或交叉时(i >= j),说明分区完成当所有元素相同时(如全2),每次只能确定一个元素的位置,时间复杂度退化为O(n²)。

2025-03-28 14:58:20 452

原创 在 LaTeX 中强制表格位于页面顶部

通过上述方法,可有效控制表格在页面顶部显示。若仍无法解决,需检查文档中其他浮动体(如图片)的干扰或调整表格尺寸(如使用。在 LaTeX 中强制表格位于页面顶部,可以通过以下。

2025-03-13 21:02:51 605

原创 Fail to allocate bitmap

通过以上方法,可以逐步定位并解决“Fail to allocate bitmap”问题。是程序在尝试分配位图(图像)内存时出现的错误,通常与。

2025-03-12 16:03:26 665

原创 Latex编辑时遇到的一些错误,持续更新~

无法正常加粗文本通常由以下原因导致。部分字体(如某些默认或自定义字体)未包含粗体变体,导致。通过上述方法,可以解决 LaTeX 中。仅适用于文本模式,数学模式中需使用。时,未正确配置系统字体路径或名称。在 LaTeX 中,使用。)可能覆盖默认字体设置。

2025-03-12 15:57:17 367

原创 latex错误

环境内会导致标签与公式不匹配(尤其在多行情况下)。应当改用支持多行对齐的环境(如。环境不支持多行公式,但代码中试图用。,分母部分没有完整包裹。

2025-03-09 22:01:33 297

原创 牛客周赛 Round 84

这道题,我是小菜鸡,拿1-10的例子推了半天,才想明白,陡峭值最小的时候只能是有序的,有序的话就只有两种排列方式了,当然如果全部一样那就只有一种排列方式了,这里开始被几个一样的数迷住了,觉得数一样但是原始的位置并不一样,随机组合就是一种新的排列,后面发现人家就没这个意思。写在这里,好久没有做过c\c++的题目了,上一次正经打还是在20年,这么多年了还是菜的一批。数据规模很小,不会超时,直接暴力循环来计算。

2025-03-09 21:01:36 424

原创 ValueError: data mapping points must start with x=0 and end with x=1。

通过检查数据范围、正确设置归一化参数,并确保颜色条的刻度和标签在。

2025-03-07 15:23:39 676

原创 linux下解压zip文件命令

5、把/home目录下面的a1.zip、a2.zip、a3.zip同时解压到/home目录里面。2、把/home目录下面的data.zip解压到databak目录里面。3、把/home目录下面的a文件夹和3.txt压缩成为a123.zip。4、把/home目录下面的t.zip直接解压到/home目录里面。6、把/home目录下面w.zip里面的所有文件解压到第一级目录。1、把/home目录下面的data目录压缩为data.zip。zip -r data.zip data #压缩data目录。

2025-03-07 15:15:14 294

原创 上海创智学院(测试)算法笔试(ACM赛制)部分例题

第二: 就是复制的时候是浅层copy还是深层copy,这里也忘记那个是深那个是浅了,反正就是一个直接复制地址,一个是复制内容。这个题目做的有点磕巴,好几年没有写过c/c++了,连string的复制都不会写了,哈哈哈,太笨了。用队列来表示能生存的数字,被队列抛弃的就是死掉的数字,最后只剩一个数的时候,就是最终答案。这里就是自己设置一个学生结构体,然后自定义个结构体排序就好了。后面一点点捡起来,还是写出来了,本身没啥;第一:整行读入,要自己分单词。

2025-02-25 21:33:37 567 4

原创 计算重建dMRI与GrondTruth之间的角度误差图(AAE)代码实现(pytorch)

模块化将数据加载、特征向量计算、角度误差计算和结果保存分别封装为独立的函数。代码复用使用load_data和函数减少重复代码。性能优化使用 NumPy 的向量化操作,避免显式循环。可读性添加函数文档和注释,使用更具描述性的变量名。健壮性添加文件路径检查和异常处理(未在代码中体现,可根据需要补充)。

2025-02-25 15:19:34 199

原创 dMRI中,扩散加权梯度方向为bvec,梯度权重为b的dMRI信号和不加劝的信号s0之间的关系

扩散加权信号 ( S(b, \mathbf{g}) ) 与未加权信号 ( S_0 ) 之间的关系由以下公式描述:通过测量多个梯度方向下的信号,可以拟合扩散张量 ( \mathbf{D} ),从而研究组织的微观结构。

2025-02-19 16:57:09 887

原创 nd.interpolation.zoom的用法

是 SciPy 库中的一个函数,用于对数组(如图像或多维数据)进行缩放(上采样或下采样)。它通过插值方法调整数组的大小。

2025-02-17 13:52:47 368

原创 快速教你怎么写自己的dataloader

Dataset。

2025-02-17 10:47:20 311

原创 leetcode-树练习-maximum-depth-of-binary-tree

但是我看到牛客里面也有这个题目,但是题目要求空间复杂度为O(1),看到时没想到怎么压缩最坏的链表情况,有趣的是,我就用最简单的递归的代码提交还过了,牛客的题解也全部都是O(n)的做法,难道是写错了?这样确实比较简单,就是深度优先搜索,优先向下搜索,找到所有的空节点,然后返回,求出最大的深度。时间复杂度 O(N):计算所有结点的深度的递归需要经过每个结点。空间复杂度 O(N):递归占用的栈空间。

2025-02-16 12:33:03 363

原创 一个n*m的二维非零tensor,如何将小于0.5的元素设置为零

在 PyTorch 中,你可以使用布尔索引(Boolean Indexing)来将小于 0.5 的元素设置为零。

2025-02-16 11:37:41 195

原创 np.hstack函数的用法

np.hstack用于将数组沿水平方向堆叠。适用于一维和多维数组,但需要满足形状匹配条件。是的简化版本。

2025-02-14 15:15:19 330

原创 给你一个三维numpy,形状为n*120*140,这里n<30,在其第一位维度n上扩展,将其扩展到30,扩展的部分全部设置为零

你可以使用numpy的np.pad函数来在第一个维度上扩展数组,并将扩展的部分设置为零。

2025-02-14 15:03:32 167

原创 如何将一个20*10的numpy的每一行按照从大到小进行排序,并得到原始的索引

要对一个形状为(20, 10)的numpy数组的每一行按从大到小排序,并同时获取排序后的原始索引,可以使用numpy的np.argsort函数。

2025-02-14 15:02:26 379

原创 A Siamese Network With Node Convolution for Individualized Predictions Based on Connectivity Maps Ex

总的来说,这篇论文的方法就是使用节点卷积来适应功能链接矩阵,利用孪生网络解决样本量不足的问题,因为我之前没有关注过小样本学习并不了解孪生网络,但是我通过这篇论文理解的孪生网络就像是一种数据增强,将原本的样本量由n个变成了n的组合数,另外该论文将对比损失改成了MSE,这种就是使得他的网络最终能够得到一个具体的定量结果。最后,基于SNNC的模型具有可解释性。(样本对作为输入的孪生网络解决样本量不足的问题)通过使用样本对(而不是单个样本)作为输入的孪生网络的参与,可以在很大程度上缓解样本量不足的问题。

2024-11-21 16:01:11 638

原创 计算和比较不同图像重建方法之间的视觉相似性,使用 LPIPS(Learned Perceptual Image Patch Similarity)度量来评估。

计算和比较不同图像重建方法之间的视觉相似性,使用 LPIPS(Learned Perceptual Image Patch Similarity)度量来评估。

2024-10-29 21:04:54 446

原创 python图像的计算PSNR、SSIM和RMSE

详细计算两个图像的PSNR\SSIM\RMSE的可执行代码,给出了封装好的函数,包含是否对图像进行mask操作,当然运行之前你需要在你的环境中加入一些包:numpy、skimage、nibabel、 dipy。

2024-10-29 20:49:56 604

原创 UltraSR: Spatial Encoding is a Missing Key for Implicit Image Function-based Arbitrary-Scale Super-R

最近NeRF等相关隐式神经表示方法的成功为连续图像表示开辟了一条新的道路,像素值不再需要从存储的离散二维数组中查找,而是可以从连续空间域上的神经网络模型中推断。尽管最近的LIIF工作已经证明这些新方法在任意尺度的超分辨率任务上都能取得很好的性能,但由于对高频纹理的预测不准确,它们的升尺度图像经常会出现结构失真。其中,s为目标像素在HR域的值,vr为参考位置在LR域的特征向量,δ x为目标像素x与参考位置xr的归一化距离。在本节中,我们将讨论UltraSR的局限性以及我们的工作可以扩展的三个潜在的未来方向。

2024-10-29 20:39:26 1158

原创 【Super-resolved q-space learning of diffusion MRI】

目前基于学习的方法所使用的d MRI数据来源于特定的采集协议,因此本文提出的q-空间超分辨率方法不能直接应用于一些不同协议的临床数据集。由于高质量的异常数据需要耗费大量的精力和时间来获取,因此对其在不同患者群体中的普遍适用性的评估仍是未来的研究方向。在具有多样性和良好分布的训练数据集的情况下,所提出的方法可能能够泛化多种情况,因为足够的样本可以包括各种类型的组织结构。在未来的工作中,我们将继续优化我们的方法,以提高大脑边缘区域的估计精度,并探索在临床疾病数据中重建病变部位的可行性。

2024-10-25 20:49:12 1112

原创 【Angular Super-Resolution in Diffusion MRI with a 3D Recurrent Convolutional Autoencoder】

关键词: 扩散MRI, 深度学习, 角度超分辨率, 循环CNN, 图像合成弥散MRI(dMRI)分析技术的进步继续推动通过非侵入性成像模式可以实现的界限(Zhang等人,2012;拉菲尔特等人,2017;德雷克-P·埃雷斯等人,2018 年)。然而,获取这些更先进的技术所需的高角分辨率扩散成像(HARDI)是一项挑战。HARDI 数据需要采集通常三十个或更多的扩散方向,通常在几个b值(多壳)下,才能有效地使用这些技术。因此,由于获取这种高分辨率数据集的时间限制,从这些进步中受益在临床上是不可行的(HARDI

2024-10-25 20:11:13 1184

原创 【INR-V: A Continuous Representation Space for Video-based Generative Tasks】

Comment: Published in Transactions on Machine Learning Research (10/2022);https://openreview.net/forum?id=aIoEkwc2oBINR-V:基于视频的生成任务的连续表示空间摘要:生成视频是一项复杂的任务,它是通过逐帧生成一组时间连贯的图像来完成的。这将视频的表现力限制为仅对各个视频帧进行基于图像的操作,需要网络设计才能在底层图像空间中获得时间相干的轨迹。我们提出了 INR-V,一种视频表示网络,可以为基

2024-10-22 10:04:27 1136

原创 使用python根据参数量(GFLOPs)、Flops(用气泡大小表示)和PSNR绘制气泡图

如果你的数据存储在文件中,你可能需要使用 pandas 等库来读取数据,然后按照上述方法绘制图表。如果需要帮助处理具体的数据文件,请提供更多的信息或文件示例。这个示例假设你的数据已经按照 (模型名称, 参数量, PSNR, Flops) 的格式组织好。请根据你的实际数据调整。

2024-10-21 15:42:53 892

原创 如何在visio文本中插入上标或下标

选中要成为上标的文字,ctrl+shift+“=”选中要成为下标的文字,ctrl+“=”斜体快捷键,ctrl+“I”加粗快捷键,ctrl+“B”

2024-10-14 10:57:13 1495

原创 2024年诺贝尔物理学奖颁发给了机器学习与神经网络领域的研究者,这是历史上首次出现这样的情况

这项奖项原本只授予对自然现象和物质的物理学研究作出重大贡献的科学家,如今却将全球范围内对机器学习和神经网络的研究和开发作为了一种能够深刻影响我们生活和未来的突出成果。物理学不仅仅是关于物质和自然现象的研究,它也涉及到信息、复杂系统和计算的理论基础,这些都是机器学习和神经网络的核心概念。然而,这一决定也可能引发一些讨论,比如关于诺贝尔奖的评选标准是否应该扩展到包括技术应用和跨学科研究,以及如何在保持物理学传统研究领域的同时,认可新兴领域的贡献。这可能会对未来的科学研究和技术创新产生深远的影响。

2024-10-11 19:29:23 153

原创 检查一个文件夹是否存在,如果不存在则创建它

在Python中,如果您想检查一个文件夹是否存在,如果不存在则创建它,您可以使用。默认会创建所有中间目录(如果它们不存在的话),这就像在Unix中使用。如果文件夹已经存在,它将打印一条消息说明文件夹已存在。这段代码首先定义了您想要检查的文件夹路径。,这样如果目录已存在,它不会抛出一个错误。这样,即使文件夹已经存在,代码也不会抛出异常。函数来创建新文件夹。如果您不想创建中间目录,可以传递。来检查这个路径是否存在。函数来检查路径是否存在,以及。,说明文件夹不存在,接着使用。

2024-10-11 12:52:45 927

原创 dipy 1.9.0 requires numpy>=1.22.4, but you have numpy 1.19.5 which is incompatible.

请注意,升级或降级库版本可能会影响其他依赖于这些库的项目的兼容性,因此在进行任何更改之前,请确保备份您的工作环境。请根据您的具体情况选择合适的解决方案,并在进行任何操作前备份您的环境,以免造成不必要的麻烦。:如果错误消息指出了特定的包版本冲突,尝试手动安装一个满足所有依赖条件的版本。:创建一个新的虚拟环境,并在其中安装所需的包,有时可以避免全局环境中的包版本冲突。或其他依赖 NumPy 的库到一个与您当前 NumPy 版本兼容的版本。的官方文档,了解每个版本的特性和兼容性要求,以便做出更合适的版本选择。

2024-10-10 21:21:14 371

原创 cannot import name ‘__all__‘ from ‘numpy.linalg‘ (G:\ProgramData\Anaconda3\Lib\site-packages\numpy\l

在提问时,提供您的操作系统、Python版本、NumPy版本和SciPy版本等信息将有助于他人更快地帮助您解决问题。您可以尝试运行您的代码时提供更多的日志输出,或者查看完整的错误堆栈跟踪。:您的Python环境可能存在问题,比如有多个版本的NumPy或SciPy库冲突,或者某些库损坏。:在您的代码中,检查是否有不必要的导入语句,或者是否有导入顺序可能导致的问题。:确保您的Python版本与您的NumPy和SciPy版本兼容。:您的NumPy版本可能存在问题,或者与SciPy版本不兼容。的属性时出现了问题。

2024-10-10 21:00:00 2051

原创 如何检查pulp与环境中已安装的包之间的兼容性以及出现问题如何解决

安装包版本冲突,兼容性问题和解决方案

2024-10-10 10:30:00 803

原创 三种不同的q空间单壳层下采样方法的代码示例

以下是三种不同的q空间单壳层下采样方法的代码示例。

2024-10-10 08:30:00 85

原创 用python的代码实现使用MILP方法进行下采样

此外,目标函数和约束条件可能需要根据你的具体问题进行调整。这个示例尝试最大化所有选择样本之间的最小距离,但你可能有不同的目标(例如,最小化最大距离或最大化覆盖范围)。在实际应用中,你可能还需要考虑其他因素,如b值、梯度方向之间的相关性等。此外,Gurobi是商业软件,需要购买许可证或使用教育许可证。在Python中实现使用混合整数线性规划(MILP)方法进行下采样,你可以使用。应该是一个Nx3的矩阵,每行代表一个梯度方向。是一个数组,表示从每个壳层中选择的样本数量。请注意,这个示例中的。

2024-10-10 08:15:00 261

原创 使用PuLP库进行Q空间单壳层下采样的具体代码实现

我们将定义一个MILP问题,目标是选择一组代表性的梯度方向,以均匀地覆盖整个球面。首先,确保你已经安装了PuLP库。如果没有安装,可以通过以下命令安装:代码实现代码说明问题定义:决策变量:目标函数:约束条件:求解问题:获取结果:这个示例代码展示了如何使用PuLP库进行Q空间单壳层下采样。你可以根据具体需求调整目标函数和约束条件。

2024-10-09 20:53:34 261

原创 【DMRI】如何利用dipy进行dmri的patch2self去噪处理,并将去噪后的数据存储为nii的格式

patch2self是目前dMRI数据去噪比较好用的方法,去噪效果较好,并且在cpu上就可以运行,dipy提供了现成的函数接口。

2024-10-09 20:15:11 337

原创 【DMRI】如何安装,以及如何使用来读取dmri数据

DIPY是一个用于分析扩散磁共振成像(dMRI)数据的Python库。它提供了多种工具和算法用于dMRI数据的加载、处理、重建、跟踪和可视化。DIPY是开源的,并且是神经影像学分析中使用广泛的软件之一。DIPY可以通过pip或conda进行安装。更多详细信息和高级功能,建议参考DIPY的官方文档。

2024-10-09 19:48:28 413

原创 【DIPY】在Python中,可以使用DIPY库来实现基于b向量的下采样策略。

请根据你的具体需求调整上述策略。例如,你可能想要基于b向量的方向分布来选择一个更均匀分布的子集,或者使用更复杂的方法来确保下采样后的b向量能尽可能多地覆盖整个q空间。这段代码首先计算了所有b向量的长度,并选择了长度最大的50个b向量。然后,它使用这些b向量创建了一个新的梯度表,这个梯度表可以用于后续的dMRI数据分析。在Python中,可以使用DIPY库来实现基于b向量的下采样策略。

2024-10-09 19:40:24 557

LPCA-AONLM算法代码程序包

LPCA-AONLM算法代码程序包

2025-03-26

采集到的dcm数据转换为nii格式,python源代码,直接可用

采集到的dcm数据转换为nii格式,python源代码,直接可用

2024-11-19

A Survey on Evolutionary Computation for Computer Vision

A Survey on Evolutionary Computation for Computer Vision

2024-09-21

2021达摩十大科技趋势

2021达摩十大科技趋势

2024-09-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除