医学图像处理
文章平均质量分 60
包含一些最新最前沿CV和医学图像领域的论文解读分享、论文代码解读,医学图像的例如MRI,DMRI后续的参数估计,分析方法,指标计算等等
沉默着爆发
这个作者很懒,什么都没留下…
展开
-
计算和比较不同图像重建方法之间的视觉相似性,使用 LPIPS(Learned Perceptual Image Patch Similarity)度量来评估。
计算和比较不同图像重建方法之间的视觉相似性,使用 LPIPS(Learned Perceptual Image Patch Similarity)度量来评估。原创 2024-10-29 21:04:54 · 282 阅读 · 0 评论 -
python图像的计算PSNR、SSIM和RMSE
【代码】python图像的计算PSNR、SSIM和RMSE。原创 2024-10-29 20:49:56 · 272 阅读 · 0 评论 -
【Super-resolved q-space learning of diffusion MRI】
目前基于学习的方法所使用的d MRI数据来源于特定的采集协议,因此本文提出的q-空间超分辨率方法不能直接应用于一些不同协议的临床数据集。由于高质量的异常数据需要耗费大量的精力和时间来获取,因此对其在不同患者群体中的普遍适用性的评估仍是未来的研究方向。在具有多样性和良好分布的训练数据集的情况下,所提出的方法可能能够泛化多种情况,因为足够的样本可以包括各种类型的组织结构。在未来的工作中,我们将继续优化我们的方法,以提高大脑边缘区域的估计精度,并探索在临床疾病数据中重建病变部位的可行性。原创 2024-10-25 20:49:12 · 1021 阅读 · 0 评论 -
【Angular Super-Resolution in Diffusion MRI with a 3D Recurrent Convolutional Autoencoder】
关键词: 扩散MRI, 深度学习, 角度超分辨率, 循环CNN, 图像合成弥散MRI(dMRI)分析技术的进步继续推动通过非侵入性成像模式可以实现的界限(Zhang等人,2012;拉菲尔特等人,2017;德雷克-P·埃雷斯等人,2018 年)。然而,获取这些更先进的技术所需的高角分辨率扩散成像(HARDI)是一项挑战。HARDI 数据需要采集通常三十个或更多的扩散方向,通常在几个b值(多壳)下,才能有效地使用这些技术。因此,由于获取这种高分辨率数据集的时间限制,从这些进步中受益在临床上是不可行的(HARDI原创 2024-10-25 20:11:13 · 962 阅读 · 0 评论 -
【INR-V: A Continuous Representation Space for Video-based Generative Tasks】
Comment: Published in Transactions on Machine Learning Research (10/2022);https://openreview.net/forum?id=aIoEkwc2oBINR-V:基于视频的生成任务的连续表示空间摘要:生成视频是一项复杂的任务,它是通过逐帧生成一组时间连贯的图像来完成的。这将视频的表现力限制为仅对各个视频帧进行基于图像的操作,需要网络设计才能在底层图像空间中获得时间相干的轨迹。我们提出了 INR-V,一种视频表示网络,可以为基原创 2024-10-22 10:04:27 · 1059 阅读 · 0 评论 -
使用PuLP库进行Q空间单壳层下采样的具体代码实现
我们将定义一个MILP问题,目标是选择一组代表性的梯度方向,以均匀地覆盖整个球面。首先,确保你已经安装了PuLP库。如果没有安装,可以通过以下命令安装:代码实现代码说明问题定义:决策变量:目标函数:约束条件:求解问题:获取结果:这个示例代码展示了如何使用PuLP库进行Q空间单壳层下采样。你可以根据具体需求调整目标函数和约束条件。原创 2024-10-09 20:53:34 · 223 阅读 · 0 评论 -
用python的代码实现使用MILP方法进行下采样
此外,目标函数和约束条件可能需要根据你的具体问题进行调整。这个示例尝试最大化所有选择样本之间的最小距离,但你可能有不同的目标(例如,最小化最大距离或最大化覆盖范围)。在实际应用中,你可能还需要考虑其他因素,如b值、梯度方向之间的相关性等。此外,Gurobi是商业软件,需要购买许可证或使用教育许可证。在Python中实现使用混合整数线性规划(MILP)方法进行下采样,你可以使用。应该是一个Nx3的矩阵,每行代表一个梯度方向。是一个数组,表示从每个壳层中选择的样本数量。请注意,这个示例中的。原创 2024-10-10 08:15:00 · 176 阅读 · 0 评论 -
三种不同的q空间单壳层下采样方法的代码示例
以下是三种不同的q空间单壳层下采样方法的代码示例。原创 2024-10-10 08:30:00 · 53 阅读 · 0 评论 -
【DMRI】如何利用dipy进行dmri的patch2self去噪处理,并将去噪后的数据存储为nii的格式
patch2self是目前dMRI数据去噪比较好用的方法,去噪效果较好,并且在cpu上就可以运行,dipy提供了现成的函数接口。原创 2024-10-09 20:15:11 · 245 阅读 · 0 评论 -
【文献阅】Transformer-empowered Multi-scale Contextual Matching and Aggregation for Multi-contrast MRI Su
磁共振成像(MRI)是一种重要的医学影像技术,它能在不引起电离辐射的情况下提供组织结构和功能的清晰信息。然而,由于成像系统的本质缺陷和身体某些部位(如腹部)的气颤,在临床获得高分辨率(HR) MR图像具有挑战性。此外,长时间的采集过程可能会给患者带来不适,引入运动伪影,从而影响图像质量。超分辨率(SR)重建是一种很有前途的不需要升级硬件设施就能提高MR图像质量的方法。原创 2024-09-27 12:32:36 · 983 阅读 · 0 评论 -
【DMRI】如何安装,以及如何使用来读取dmri数据
DIPY是一个用于分析扩散磁共振成像(dMRI)数据的Python库。它提供了多种工具和算法用于dMRI数据的加载、处理、重建、跟踪和可视化。DIPY是开源的,并且是神经影像学分析中使用广泛的软件之一。DIPY可以通过pip或conda进行安装。更多详细信息和高级功能,建议参考DIPY的官方文档。原创 2024-10-09 19:48:28 · 288 阅读 · 0 评论 -
【DIPY】在Python中,可以使用DIPY库来实现基于b向量的下采样策略。
请根据你的具体需求调整上述策略。例如,你可能想要基于b向量的方向分布来选择一个更均匀分布的子集,或者使用更复杂的方法来确保下采样后的b向量能尽可能多地覆盖整个q空间。这段代码首先计算了所有b向量的长度,并选择了长度最大的50个b向量。然后,它使用这些b向量创建了一个新的梯度表,这个梯度表可以用于后续的dMRI数据分析。在Python中,可以使用DIPY库来实现基于b向量的下采样策略。原创 2024-10-09 19:40:24 · 517 阅读 · 0 评论 -
在Python中实现扩散磁共振成像(dMRI)的q空间下采样策略
在Python中实现扩散磁共振成像(dMRI)的q空间下采样策略,可以使用一些专业的库,如DIPY和QSIPrep。原创 2024-10-09 19:30:46 · 389 阅读 · 0 评论 -
一些有效的q空间下采样策略
在不同的b值下进行采样,通常包括一个低b值的基态成像和一个或多个不同b值的扩散编码成像,以获得不同尺度的组织结构信息。:根据预先定义的规则或先前的知识,选择对组织结构特征最敏感的q空间区域进行采样,以提高数据的有效性。:这种策略涉及在q空间中均匀分布采样点,确保各个方向上的采样均衡,从而获得较为全面的组织结构信息。:通过减少采样点的数量来缩短扫描时间,例如使用随机采样或者优先选择对图像重建影响较大的采样点。:通过精心设计的q空间采样轨迹,结合先进的重建算法,以提高成像的速度和质量。原创 2024-10-09 19:29:03 · 226 阅读 · 0 评论 -
Learning Continuous Image Representation with Local Implicit Image Function
<p>Learning Continuous Image Representation with Local Implicit Image Function(阅读笔记)11.03</p><p><img src="https://img2023.cnblogs.com/blog/1689519/202309/1689519-20230913153609198-735566268.png" /></p><p>局部隐式图像函数(LIIF)原创 2024-09-28 22:06:54 · 958 阅读 · 0 评论