背包问题套路模板

背包问题
N – 物品数目, W – 物品重量 V – 物品价值
M – 背包容量
dp[i][j] – 容量为j的背包,在前i个物品中装,最多能装多少价值

     //   dp[i][j] dp[i - 1][j], dp[i - 1][j -w[i]] + v[i]        
        for(int i = 0; i < N; i++) {
        
            for(int j = 0; j <= M; j++) {
                if(i == 0) {
                    if(w[i] <= j) {
                      dp[i][j] = v[i];  
                    }
                    
                }

                if(j - w[i] >= 0 && i - 1 >= 0) {

                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j -w[i]] + v[i]);

                }
                else if(i - 1 >= 0) { // 或许应该是j - w[i] ?
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值