
深度学习
文章平均质量分 64
记录学习过程点滴
挥剑决浮云 -
永远和自己的无知作斗争!
展开
-
Linux下使用open3d进行点云可视化(.bin文件)
KITTI范围:point_cloud_range = [0, -40, -3, 70.4, 40, 1]原创 2024-03-10 01:17:25 · 1098 阅读 · 2 评论 -
DBSCAN聚类算法学习笔记
1、开始选取一点,看邻域范围内是否达到MinPts,达到就加入簇,图示标为红,没达到就判断下一个。2、如果在该点的半径范围内至少存在MinPoint点,那么认为所有这些点都属于同一个聚类。优点是DBSCAN算法不需要事先指定聚类的数量,而是通过样本密度来聚合在一起,对于。(比如自动驾驶场景下的点云,含有车、行人、骑行者等,有些目标在空间上还很靠近)及。MinPts:聚类在一起的点的最小数目,超过这一阈值才算是一个族群。核心点:邻域内数据点超过MinPts的点。噪声点:既不是核心点也不是边界点的点。原创 2023-12-06 21:32:32 · 382 阅读 · 0 评论 -
VNC连接服务器实现远程桌面 --以AutoDL云服务器为例
云服务器租显卡跑些小模型很方便,但是当你想做可视化的时候,可能会遇到麻烦,云服务器没有显示输出界面,无法可视化一些检测任务的结果,或者可以下载结果到本地搭建环境跑可视化推理,但是,有些项目的可视化在win下不好安装依赖包。以上启动Server时,手动设置了rfbport=6006端口,下面通过SSH隧道将实例中的6006端口代理到本地。保持输入该命令后Terminal的开启状态,关闭后会杀掉进程,导致VNC Viewer登陆失败。确认vncserver的进程已经关闭,xxxxx为进程号,替换。原创 2023-11-10 10:57:55 · 5506 阅读 · 34 评论 -
深度学习项目部署遇到的错误【记录】
...原创 2022-09-18 20:23:18 · 4273 阅读 · 2 评论 -
1*1的卷积核作用
目前初步接触到的作用:降维( dimension reductionality )。比如,一张500 * 500且厚度depth为100 的图片在20个filter上做11的卷积,那么结果的大小为500500*20。升维同理。深度学习中,卷积本质上是对信号按元素相乘累加得到卷积值:卷积:多通道形式一个5 x 5 x 3矩阵,有3个通道,filters是3 x 3 x 3矩阵。首先,filters中的每个kernels分别应用于输入层中的三个通道,执行三次卷积,产生3个尺寸为3×3的通道:将这原创 2022-04-20 19:38:50 · 3433 阅读 · 0 评论