终于还是踏上了算法这条不归路,记录一下做题的历程
寻找旋转排序数组中的最小值
已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:
若旋转 4 次,则可以得到 [4,5,6,7,0,1,2] 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], …, a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], …, a[n-2]] 。
给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
示例
输入:nums = [3,4,5,1,2]
输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。
输入:nums = [4,5,6,7,0,1,2]
输出:0
解释:原数组为 [0,1,2,4,5,6,7] ,旋转 4 次得到输入数组。
输入:nums = [11,13,15,17]
输出:11
解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。
二分查找
连续两天二分查找。 二分查找主要用来解决有序数组、旋转数组的查找问题。 通过有序这一性质,每次排除一半的数据,降低了查找所消耗的时间复杂度。
根据题意,旋转后的数组可看成两个有序数组。我们还知道旋转数组的一个特性,除了数组中元素全部相等的情况下,当出现分界点的时候该点下一元素即为最小元素(前一个元素大于后一个元素时,后一个元素为最小值)。暴力查找这个分界点的做法也可以(狗头)。
所以这个问题可以分解为寻找分界点的问题。当右值小于中值时,mid左边数组有序,分界点在右边,故将左边界移至mid+1处,将搜索区间缩小至右边。反之,mid右边数组有序,分界点在左边,将有边界移至mid处,搜索区间缩小至左边。
刚开始写代码时遇到一个问题,后面会讲到。
代码
class Solution {
public:
int findMin(vector<int>& nums) {
int left = 0, right = nums.size() - 1;
while(left<right){ // 左右指针相等时,数组
int mid = left + (right - left) / 2; // 地板除,代码这样写是为了防止(left+right)溢出。(left+right)/2
if(nums[right]<nums[mid]){ // 右值小于中值,左边有序。最小值必然在右边,将查找区间缩小至右边即可。
left = mid+1; // 右值小于中值,中值肯定不是最小值
}
else if(nums[right]>nums[mid]){ // 右值大于中值 ,最小值在左边(也可能是中值)。
right = mid; // 最小值也可能是中值,故取中值。
}
}
return nums[left]; // left == right 输出一个即可。
}
};
注:这里有一点要讨论一下。为什么if判断中和mid比较的是right而不是left?
先说下自己的理解:当使用left作判断时,会发现有些特殊情况需要处理。使用right作判断时,可以使问题简化需要做出对应的处理也将减少。
如,[3,4,5,1,2]和[1,2,3,4,5],均为nums[left] < nums[mid] 此时左边有序,但无法判断最小值在左边还是右边。下面有作者也进行了分析。
寻找最大值时使用left可以简化查找。
https://leetcode-cn.com/problems/find-minimum-in-rotated-sorted-array/solution/er-fen-cha-zhao-wei-shi-yao-zuo-you-bu-dui-cheng-z/
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-minimum-in-rotated-sorted-array