北邮 7-2 棋盘有地雷的八皇后问题 (30分)

这篇博客介绍了如何使用回溯算法解决经典的八皇后问题,尤其是在棋盘中存在地雷的情况下。作者给出了一个未优化的Python实现,通过检查皇后放置的合法性来避免冲突。程序读取输入的地雷坐标,然后递归地尝试所有可能的摆放位置,最终输出可行的摆放方法数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在国际象棋中,皇后是最厉害的棋子,可以横走、直走,还可以斜走。棋手马克斯·贝瑟尔 1848 年提出著名的八皇后问题:即在 8 × 8 的棋盘上摆放八个皇后,使其不能互相攻击 —— 即任意两个皇后都不能处于同一行、同一列或同一条斜线上。 棋盘某个格子有地雷不能放皇后,问有多少种摆法?
输入格式:
有地雷格子的坐标x和y,用空格分开
输出格式:
摆放方法的个数
输入样例:
在这里给出一组输入。例如:2 4表示第二行,第四列。
2 4
输出样例:
在这里给出相应的输出。例如:
84


解析

这个随便写了,回溯(未优化版本)

from typing import List

matrix = [[ 0 for col in range(8) ] for row in range(8) ]
def check(row,col):
    for it in range(0, col):
        if matrix[row][it] == 1:
            return False
    for it in range(0, row):
        if matrix[it][col] == 1:
            return False
    tpcol = col - 1
    for it in reversed(range(0, row)):
        if tpcol >= 0 and matrix[it][tpcol] == 1:
            return False
        else:
            tpcol -= 1
        if tpcol < 0 :
            break
    tpcol = col + 1
    for it in reversed(range(0, row)):
        if tpcol < 8 and matrix[it][tpcol] == 1:
            return False
        else:
            tpcol += 1
        if tpcol >= 8:
            break
    return True


def backroute(row,list):
    if row == 8:
        list[0] += 1
    else:
        for col in range(8):
            if matrix[row][col] == 0 and check(row, col) == True:
                matrix[row][col] = 1
                backroute(row+1,list)
                matrix[row][col] = 0


list = []
list.append(0)
x, y = map(int, input().split())
x = x - 1
y = y - 1
matrix[x][y] = -1
backroute(0,list)
print(list[0])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值