题目:
将正整数n表示成一系列正整数之和:n=n1+n2+…+nk,
其中n1≥n2≥…≥nk≥1,k≥1。
正整数n的这种表示称为正整数n的划分。求正整数n的不同划分个数。
例如正整数6有如下11种不同的划分:
6;
5+1;
4+2,4+1+1;
3+3,3+2+1,3+1+1+1;
2+2+2,2+2+1+1,2+1+1+1+1;
1+1+1+1+1+1。
分析:
在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。

正整数n的划分数p(n)=q(n,n)。
附代码:
#include<iostream>
#include<algorithm>
using namespace std;

本文探讨了如何利用分治策略解决正整数的划分问题,通过定义q(n, m)表示最大加数不大于m的划分个数,并建立了其递归关系。给出了相关代码实现。"
7438084,1282370,GPIO_keys驱动详解:初始化与中断处理,"['GPIO驱动', 'Linux内核', '驱动开发', '输入设备', '中断']
最低0.47元/天 解锁文章
1180

被折叠的 条评论
为什么被折叠?



