C语言实现:将正整数n划分成一系列的正整数之和,计算共有多少种划分方法(递归、分治法)

C语言实现正整数划分的递归分治算法
本文介绍了如何使用C语言通过递归和分治法解决将正整数n划分为一系列正整数之和的问题。详细讨论了分治法和递归算法的概念,并给出了问题分析和实现代码,最终展示了执行结果。

C语言实现:将正整数n划分成一系列的正整数之和,计算共有多少种划分方法(递归)(分治法)

1. 问题

将一个正整数n表示成一系列的正整数之和,计算共有多少种划分方法:

在这里插入图片描述

一种划分方法被称做正整数的一个划分,不同的划分方法的个数称为该正整数n的划分数。

例如,6的划分数为11,即正整数6共有11种划分方法,每一种划分方法为:

6 = 6;
6 = 5+1;
6 = 4+2,
6 = 4+1+1;
6 = 3+3,
6 = 3+2+1,
6 = 3+1+1;
6 = 2+2+2,
6 = 2+2+1+1+1,
6 = 2+1+1+1+1;
6 = 1+1+1+1+1+1;

2. 解决方案

2.1. 分治法

在解决一些比较复杂的问题,特别是解决一些规模较大的问题时,常常将问题分解。

具体来说,就是将一个规模较大的问题分割成规模较小的同类问题,然后将这些小的子问题逐个加以解决,最终也就将整个大的问题解决。

在计算机科学中,分治法(英语:Divide and conquer)是建基于多项分支递归的一种很重要的算法范型。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒水馨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值