C语言实现:将正整数n划分成一系列的正整数之和,计算共有多少种划分方法(递归)(分治法)
文章目录
1. 问题
将一个正整数n表示成一系列的正整数之和,计算共有多少种划分方法:

一种划分方法被称做正整数的一个划分,不同的划分方法的个数称为该正整数n的划分数。
例如,6的划分数为11,即正整数6共有11种划分方法,每一种划分方法为:
6 = 6;
6 = 5+1;
6 = 4+2,
6 = 4+1+1;
6 = 3+3,
6 = 3+2+1,
6 = 3+1+1;
6 = 2+2+2,
6 = 2+2+1+1+1,
6 = 2+1+1+1+1;
6 = 1+1+1+1+1+1;
2. 解决方案
2.1. 分治法
在解决一些比较复杂的问题,特别是解决一些规模较大的问题时,常常将问题分解。
具体来说,就是将一个规模较大的问题分割成规模较小的同类问题,然后将这些小的子问题逐个加以解决,最终也就将整个大的问题解决。
在计算机科学中,分治法(英语:Divide and conquer)是建基于多项分支递归的一种很重要的算法范型。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解
C语言实现正整数划分的递归分治算法
本文介绍了如何使用C语言通过递归和分治法解决将正整数n划分为一系列正整数之和的问题。详细讨论了分治法和递归算法的概念,并给出了问题分析和实现代码,最终展示了执行结果。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



