理解多目标优化问题中的决策空间和目标空间两个核心概念

多目标优化问题中的决策空间和目标空间

决策空间(Decision Space)

定义:决策空间是所有可行解的集合,由决策变量的取值范围和约束条件共同决定
特点
维度:维度等于决策变量的数量。例如,若有n个变量,决策空间是n维的。
约束:满足问题所有约束条件(如不等式、等式约束)的变量组合构成可行域。
示例:买手机的时候,决策变量可能包括价格、内存等,其取值范围和约束条件共同形成决策空间。

目标空间(Objective Space)

定义:目标空间是所有可行解通过目标函数映射后的目标值的集合,反映解的质量
特点
维度:维度等于目标函数的数量。例如,若有m个目标,目标空间是m维的。
映射关系:每个决策变量组合(决策空间中的点)通过目标函数计算得到目标空间中的点。
示例:若目标是同时最小化价格(f₁)和最大化性能(f₂),目标空间中的点(f₁, f₂)反映不同设计方案的权衡。

两者之间的关系:

决策空间通过目标函数映射到目标空间。优化过程需在决策空间中搜索,使目标空间中的点逼近帕累托前沿(PF),如图所示。
在决策空间中找到映射到目标空间帕累托前沿的解,实现多目标最优权衡。
决策空间和目标空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值