深度学习
文章平均质量分 86
一点星Cloud
跑起来的程序似懂非懂!
展开
-
机器视觉任务中语义分割方法的进化历史
U-net的一个创新之处在于其跳跃连接(skip connections),它将编码器中的深层特征与解码器中的浅层特征相结合,弥补了在下采样过程中可能丢失的细节,从而提高了分割的精度。在编码器中,3×3的卷积层后接一个ReLU激活函数,然后通过最大池化层进行下采样,这样不断重复,虽然特征图的尺寸在减小,但特征通道的数量却在增加。这种方法适用于那些灰度值分布具有明显层次的图像。总的来说,Transformer在图像分割中的应用前景广阔,它提供了一种新的视角来处理图像分割问题,有望推动这一领域的进一步发展。原创 2024-05-10 16:25:46 · 621 阅读 · 0 评论 -
这么受欢迎的Transform到底解决了什么问题?
目前有很多注意力机制的变形体,轴注意力机制、交叉注意力机制、窗口注意力机制、十字注意力机制以及基于超像素的注意力机制。其中,最大的瓶颈就是,使用注意力机制计算会使模型参数成几何级增加,使用单一注意力机制又不能很好的获得整体特征,难免会丧失长距离或像素块间的依赖关系,导致很难应用在一些具有特殊性的图像而言。随着ChatGPT的应用,我们应该认识到对ChatGPT提出的问题(咒语或提示词)十分关键,高质量的标准化,规范化提示词,能够更好的让机器理解,并得到想要的答案,否则机器回答的可能牛唇不对马嘴。原创 2024-05-08 14:36:19 · 821 阅读 · 0 评论 -
计算机视觉领域学习资料及代码
计算机视觉深度学习是一个充满活力和挑战的领域,目前。计算机视觉可用于各种任务,如面部识别、目标检测、图像分割、运动估计和跟踪等。原创 2024-04-12 11:55:19 · 348 阅读 · 0 评论 -
一篇文章弄懂卷积神经网络基础概念
下采样即由输入图像中提取特征。其中有两个作用,一是减少计算量,防止过拟合;二是增大感受野,使得后面的卷积核能够学到更加全局的信息。下采样常用的方式有两种:采用stride为2的池化层和采用stride为2的卷积层(下采样的过程是一个信息损失的过程)。上采样即将图像恢复到原来的尺寸(使图像由小分辨率映射到大分辨率)。其目的是为了进一步计算(图像补全、图像的语义分割),上采样常用的方式有三种:插值法、转置卷积以及Up-Pooling。原创 2023-05-23 22:44:04 · 460 阅读 · 0 评论