题目描述:
存在一个由 n 个节点组成的无向连通图,图中的节点按从 0 到 n - 1 编号。
给你一个数组 graph 表示这个图。其中,graph[i] 是一个列表,由所有与节点 i 直接相连的节点组成。
返回能够访问所有节点的最短路径的长度。你可以在任一节点开始和停止,也可以多次重访节点,并且可以重用边。
示例 1:
输入:[[1,2,3],[0],[0],[0]]
输出:4
解释:一个可能的路径为 [1,0,2,0,3]
示例 2:
输入:[[1],[0,2,4],[1,3,4],[2],[1,2]]
输出:4
解释:一个可能的路径为 [0,1,4,2,3]
数据范围:
1 <= graph.length <= 12
0 <= graph[i].length < graph.length
题解:可知数据范围较小可以使用深搜,但是每个节点都可以被重复访问,所以有可能陷入死循环,所以在每次访问一个节点时通过二进制位(最多只有12个节点,可以存下)记录其访问节点的状态,若访问过则不在访问。每个节点都应该是搜索的一种初始状态,并且从每个节点的这个初始状态去探索其他状态,并且最终找到目标状态前,遍历所有可能性。使用BFS进行解题。
class Solution {
public:
int shortestPathLength(vector<vector<int>>& graph) {
int n=graph.size();
int is_ok=(1<<n)-1;
queue<pair<int,int>> que;
vector<vector<int>> vis(n,vector<int>(1<<n));
for(int i=0;i<n;++i){
que.push({i,1<<i});
}
int steps=0;
while(que.size()){
int sum=que.size();
while(sum-->0){
auto x=que.front();
que.pop();
int v=x.first,state=x.second;
if(state==is_ok) return steps;
if(vis[v][state]==1) continue;
vis[v][state]=1;
for(auto &u:graph[v]){
que.push({u,state|(1<<u)});
}
}
steps+=1;
}
return -1;
}
};