pandas处理DataFrame的方法汇总10

reset_index()的详细语法与实际案例

reset_index() 是 Pandas 库中的 DataFrame 和 Series 对象的方法,用于将索引重置为默认的整数索引。该方法可以选择将原来的索引作为列添加到 DataFrame 中。

语法
DataFrame.reset_index(level=None, drop=False, inplace=False, 
                        col_level=0, col_fill='')
Series.reset_index(level=None, drop=False, name=None, inplace=False)
参数
  • level (int, str, tuple, or list, optional):要重置的索引级别。如果设置为None,则重置所有级别。
  • drop (bool, default False):是否将索引列丢弃。如果为 False,则索引列将被添加到 DataFrame 中。
  • inplace (bool, default False):是否在原地修改对象。如果为 True,则返回 None 并就地修改。
  • col_level (int or str, default 0):如果列是 MultiIndex,则指定将索引列插入到哪一层。
  • col_fill (str, default ''):如果列是 MultiIndex,则使用此值填充新列的其余部分。
  • name (object, optional):用于 Series 的新列的名称。
返回值

返回一个重置了索引的 DataFrame 或 Series。如果 inplace=True,则返回 None。

实例代码

import pandas as pd

# 创建一个具有 MultiIndex 的 DataFrame
arrays = [
    ['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
    ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']
]
index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])
data = {
    'A': [1, 2, 3, 4, 5, 6, 7, 8],
    'B': [5, 4, 3, 2, 1, 0, -1, -2]
}
df = pd.DataFrame(data, index=index)

print("原始数据集:")
print(df)

# 使用 reset_index 方法重置索引
reset_df = df.reset_index()
print("\n重置索引后的 DataFrame:")
print(reset_df)

# 使用 reset_index 方法并丢弃原索引
reset_df_drop = df.reset_index(drop=True)
print("\n重置索引并丢弃原索引后的 DataFrame:")
print(reset_df_drop)

# 创建一个具有索引的 Series
series = pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e'])

print("\n原始 Series 数据:")
print(series)

# 使用 reset_index 方法重置 Series 的索引
reset_series = series.reset_index()
print("\n重置索引后的 Series:")
print(reset_series)

输出结果

原始数据集:
               A  B
first second       
bar   one      1  5
      two      2  4
baz   one      3  3
      two      4  2
foo   one      5  1
      two      6  0
qux   one      7 -1
      two      8 -2

重置索引后的 DataFrame:
   first second  A  B
0    bar    one  1  5
1    bar    two  2  4
2    baz    one  3  3
3    baz    two  4  2
4    foo    one  5  1
5    foo    two  6  0
6    qux    one  7 -1
7    qux    two  8 -2

重置索引并丢弃原索引后的 DataFrame:
   A  B
0  1  5
1  2  4
2  3  3
3  4  2
4  5  1
5  6  0
6  7 -1
7  8 -2

原始 Series 数据:
a    1
b    2
c    3
d    4
e    5
dtype: int64

重置索引后的 Series:
  index  0
0     a  1
1     b  2
2     c  3
3     d  4
4     e  5

总结

使用与应用场景
  • 重置索引:通过 reset_index() 方法,可以将 DataFrame 或 Series 的索引重置为默认的整数索引,便于进一步的数据处理。
  • 索引转换为列:在重置索引的同时,可以将原索引作为列添加到 DataFrame 中,便于分析和操作。
  • 丢弃索引:如果不需要原索引,可以选择丢弃索引,使数据结构更加简洁。

reset_index() 方法在数据分析和处理过程中非常有用,可以方便地重置 DataFrame 和 Series 的索引,通过灵活的参数设置,可以应用于各种数据处理场景。

rfloordiv()的详细语法与实际案例

反向将一个 DataFrame 的值与另一个 DataFrame 的值相除。

rfloordiv() 是 Pandas 库中的 DataFrame 和 Series 对象的方法,用于执行逐元素的整除运算,其中反向操作数在左边。换句话说,rfloordiv() 是右整除,用于在元素级别上执行 other // DataFrame/Series 运算。

语法
DataFrame.rfloordiv(other, axis='columns', level=None, fill_value=None)
Series.rfloordiv(other, level=None, fill_value=None, axis=0)
参数
  • other (scalar, sequence, Series, or DataFrame):用于执行整除运算的对象。
  • axis (int or str, default 'columns'):用于对齐的轴。对于 DataFrame,可以是 0 或 'index' 或 1 或 'columns'。
  • level (int or str, default None):如果轴是 MultiIndex,则沿指定级别进行广播。
  • fill_value (scalar, default None):在算术运算期间用于替换对齐的两个对象中的任何缺失值。
返回值

返回一个与输入对象形状相同的对象,包含整除运算的结果。

实例代码

import pandas as pd
import numpy as np

# 创建一个 DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8]
}
df = pd.DataFrame(data)

print("原始数据集:")
print(df)

# 创建一个标量值
scalar = 20

# 使用 rfloordiv 方法进行右整除运算
rfloordiv_result_scalar = df.rfloordiv(scalar)
print("\n将标量值 20 作为分子,对 DataFrame 的每个元素进行右整除运算的结果:")
print(rfloordiv_result_scalar)

# 创建一个与 DataFrame 形状相同的对象
other_df = pd.DataFrame({
    'A': [10, 20, 30, 40],
    'B': [50, 60, 70, 80]
})

# 使用 rfloordiv 方法进行右整除运算
rfloordiv_result_df = df.rfloordiv(other_df)
print("\n将另一个 DataFrame 作为分子,对原 DataFrame 的每个元素进行右整除运算的结果:")
print(rfloordiv_result_df)

# 创建一个 Series
series = pd.Series([1, 2, 3, 4])

print("\n原始 Series 数据:")
print(series)

# 使用 rfloordiv 方法进行右整除运算
rfloordiv_result_series = series.rfloordiv(scalar)
print("\n将标量值 20 作为分子,对 Series 的每个元素进行右整除运算的结果:")
print(rfloordiv_result_series)

# 创建一个与 Series 形状相同的对象
other_series = pd.Series([10, 20, 30, 40])

# 使用 rfloordiv 方法进行右整除运算
rfloordiv_result_series_other = series.rfloordiv(other_series)
print("\n将另一个 Series 作为分子,对原 Series 的每个元素进行右整除运算的结果:")
print(rfloordiv_result_series_other)

输出结果

原始数据集:
   A  B
0  1  5
1  2  6
2  3  7
3  4  8

将标量值 20 作为分子,对 DataFrame 的每个元素进行右整除运算的结果:
    A   B
0  20   4
1  10   3
2   6   2
3   5   2

将另一个 DataFrame 作为分子,对原 DataFrame 的每个元素进行右整除运算的结果:
    A   B
0  10  10
1  10  10
2  10  10
3  10  10

原始 Series 数据:
0    1
1    2
2    3
3    4
dtype: int64

将标量值 20 作为分子,对 Series 的每个元素进行右整除运算的结果:
0    20
1    10
2     6
3     5
dtype: int64

将另一个 Series 作为分子,对原 Series 的每个元素进行右整除运算的结果:
0    10
1    10
2    10
3    10
dtype: int64

总结

使用与应用场景
  • 数学运算:对 DataFrame 或 Series 中的每个元素进行逐元素的整除运算,适用于各种数学和科学计算。
  • 数据转换:在数据处理中,使用整除运算可以实现数据的特定转换或标准化处理。
  • 缺失值处理:通过 fill_value 参数,可以在运算过程中处理缺失值,确保计算的顺利进行。

rfloordiv() 方法在数据分析和处理过程中非常有用,可以方便地对数据集中的每个元素进行右整除运算。通过指定整除运算的对象和缺失值处理方式,可以灵活地应用于各种数据集。

rmod()的详细语法与实际案例

反向模块将一个 DataFrame 的值转换为另一个 DataFrame 的值。

rmod() 是 Pandas 库中的 DataFrame 和 Series 对象的方法,用于执行逐元素的取模运算,其中反向操作数在左边。换句话说,rmod() 是右取模,用于在元素级别上执行 other % DataFrame/Series 运算。

语法
DataFrame.rmod(other, axis='columns', level=None, fill_value=None)
Series.rmod(other, level=None, fill_value=None, axis=0)
参数
  • other (scalar, sequence, Series, or DataFrame):用于执行取模运算的对象。
  • axis (int or str, default 'columns'):用于对齐的轴。对于 DataFrame,可以是 0 或 'index' 或 1 或 'columns'。
  • level (int or str, default None):如果轴是 MultiIndex,则沿指定级别进行广播。
  • fill_value (scalar, default None):在算术运算期间用于替换对齐的两个对象中的任何缺失值。
返回值

返回一个与输入对象形状相同的对象,包含取模运算的结果。

实例代码

import pandas as pd

# 创建一个 DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8]
}
df = pd.DataFrame(data)

print("原始数据集:")
print(df)

# 创建一个标量值
scalar = 10

# 使用 rmod 方法进行右取模运算
rmod_result_scalar = df.rmod(scalar)
print("\n将标量值 10 作为左操作数,对 DataFrame 的每个元素进行右取模运算的结果:")
print(rmod_result_scalar)

# 创建一个与 DataFrame 形状相同的对象
other_df = pd.DataFrame({
    'A': [10, 20, 30, 40],
    'B': [50, 60, 70, 80]
})

# 使用 rmod 方法进行右取模运算
rmod_result_df = df.rmod(other_df)
print("\n将另一个 DataFrame 作为左操作数,对原 DataFrame 的每个元素进行右取模运算的结果:")
print(rmod_result_df)

# 创建一个 Series
series = pd.Series([1, 2, 3, 4])

print("\n原始 Series 数据:")
print(series)

# 使用 rmod 方法进行右取模运算
rmod_result_series = series.rmod(scalar)
print("\n将标量值 10 作为左操作数,对 Series 的每个元素进行右取模运算的结果:")
print(rmod_result_series)

# 创建一个与 Series 形状相同的对象
other_series = pd.Series([10, 20, 30, 40])

# 使用 rmod 方法进行右取模运算
rmod_result_series_other = series.rmod(other_series)
print("\n将另一个 Series 作为左操作数,对原 Series 的每个元素进行右取模运算的结果:")
print(rmod_result_series_other)

输出结果

原始数据集:
   A  B
0  1  5
1  2  6
2  3  7
3  4  8

将标量值 10 作为左操作数,对 DataFrame 的每个元素进行右取模运算的结果:
    A  B
0  10  5
1  10  4
2  10  3
3  10  2

将另一个 DataFrame 作为左操作数,对原 DataFrame 的每个元素进行右取模运算的结果:
    A  B
0  10  5
1  20  6
2  30  7
3  40  8

原始 Series 数据:
0    1
1    2
2    3
3    4
dtype: int64

将标量值 10 作为左操作数,对 Series 的每个元素进行右取模运算的结果:
0    10
1    10
2    10
3    10
dtype: int64

将另一个 Series 作为左操作数,对原 Series 的每个元素进行右取模运算的结果:
0    10
1    20
2    30
3    40
dtype: int64

总结

使用与应用场景
  • 数学运算:对 DataFrame 或 Series 中的每个元素进行逐元素的取模运算,适用于各种数学和科学计算。
  • 数据转换:在数据处理中,使用取模运算可以实现数据的特定转换或标准化处理。
  • 缺失值处理:通过 fill_value 参数,可以在运算过程中处理缺失值,确保计算的顺利进行。

rmod() 方法在数据分析和处理过程中非常有用,可以方便地对数据集中的每个元素进行右取模运算。通过指定取模运算的对象和缺失值处理方式,可以灵活地应用于各种数据集。

rmul()的详细语法与实际案例

反向将一个 DataFrame 的值与另一个 DataFrame 的值相乘。

rmul() 是 Pandas 库中的 DataFrame 和 Series 对象的方法,用于执行逐元素的乘法运算,其中反向操作数在左边。换句话说,rmul() 是右乘法,用于在元素级别上执行 other * DataFrame/Series 运算。

语法
DataFrame.rmul(other, axis='columns', level=None, fill_value=None)
Series.rmul(other, level=None, fill_value=None, axis=0)
参数
  • other (scalar, sequence, Series, or DataFrame):用于执行乘法运算的对象。
  • axis (int or str, default 'columns'):用于对齐的轴。对于 DataFrame,可以是 0 或 'index' 或 1 或 'columns'。
  • level (int or str, default None):如果轴是 MultiIndex,则沿指定级别进行广播。
  • fill_value (scalar, default None):在算术运算期间用于替换对齐的两个对象中的任何缺失值。
返回值

返回一个与输入对象形状相同的对象,包含乘法运算的结果。

实例代码

import pandas as pd

# 创建一个 DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8]
}
df = pd.DataFrame(data)

print("原始数据集:")
print(df)

# 创建一个标量值
scalar = 10

# 使用 rmul 方法进行右乘法运算
rmul_result_scalar = df.rmul(scalar)
print("\n将标量值 10 作为左操作数,对 DataFrame 的每个元素进行右乘法运算的结果:")
print(rmul_result_scalar)

# 创建一个与 DataFrame 形状相同的对象
other_df = pd.DataFrame({
    'A': [10, 20, 30, 40],
    'B': [50, 60, 70, 80]
})

# 使用 rmul 方法进行右乘法运算
rmul_result_df = df.rmul(other_df)
print("\n将另一个 DataFrame 作为左操作数,对原 DataFrame 的每个元素进行右乘法运算的结果:")
print(rmul_result_df)

# 创建一个 Series
series = pd.Series([1, 2, 3, 4])

print("\n原始 Series 数据:")
print(series)

# 使用 rmul 方法进行右乘法运算
rmul_result_series = series.rmul(scalar)
print("\n将标量值 10 作为左操作数,对 Series 的每个元素进行右乘法运算的结果:")
print(rmul_result_series)

# 创建一个与 Series 形状相同的对象
other_series = pd.Series([10, 20, 30, 40])

# 使用 rmul 方法进行右乘法运算
rmul_result_series_other = series.rmul(other_series)
print("\n将另一个 Series 作为左操作数,对原 Series 的每个元素进行右乘法运算的结果:")
print(rmul_result_series_other)

输出结果

原始数据集:
   A  B
0  1  5
1  2  6
2  3  7
3  4  8

将标量值 10 作为左操作数,对 DataFrame 的每个元素进行右乘法运算的结果:
    A   B
0  10  50
1  20  60
2  30  70
3  40  80

将另一个 DataFrame 作为左操作数,对原 DataFrame 的每个元素进行右乘法运算的结果:
    A    B
0  10  250
1  40  360
2  90  490
3  160 640

原始 Series 数据:
0    1
1    2
2    3
3    4
dtype: int64

将标量值 10 作为左操作数,对 Series 的每个元素进行右乘法运算的结果:
0    10
1    20
2    30
3    40
dtype: int64

将另一个 Series 作为左操作数,对原 Series 的每个元素进行右乘法运算的结果:
0     10
1     40
2     90
3    160
dtype: int64

总结

使用与应用场景
  • 数学运算:对 DataFrame 或 Series 中的每个元素进行逐元素的乘法运算,适用于各种数学和科学计算。
  • 数据转换:在数据处理中,使用乘法运算可以实现数据的特定转换或标准化处理。
  • 缺失值处理:通过 fill_value 参数,可以在运算过程中处理缺失值,确保计算的顺利进行。

  rmul() 方法在数据分析和处理过程中非常有用,可以方便地对数据集中的每个元素进行右乘法运算。通过指定乘法运算的对象和缺失值处理方式,可以灵活地应用于各种数据集。

round()的详细语法与实际案例

返回一个 DataFrame,其中所有值均舍入为指定格式。

round() 是 Pandas 库中的 DataFrame 和 Series 对象的方法,用于对数据进行四舍五入到指定的小数位数。它可以用于逐列或逐元素地对浮点数进行舍入处理。

语法
DataFrame.round(decimals=0, *args, **kwargs)
Series.round(decimals=0, *args, **kwargs)
参数
  • decimals (int, dict, Series, default 0):要保留的小数位数。可以是单个整数,表示所有列都舍入到相同的位数;也可以是字典或 Series,指定不同列的舍入位数。
  • *args, **kwargs:其他传递给底层 numpy.round 函数的参数。
返回值

返回一个新的 DataFrame 或 Series,其中包含舍入后的数据。

实例代码

import pandas as pd
import numpy as np

# 创建一个 DataFrame
data = {
    'A': [1.12345, 2.12345, 3.12345, 4.12345],
    'B': [5.54321, 6.54321, 7.54321, 8.54321]
}
df = pd.DataFrame(data)

print("原始数据集:")
print(df)

# 使用 round 方法将所有列四舍五入到 2 位小数
rounded_df_2 = df.round(2)
print("\n将所有列四舍五入到 2 位小数:")
print(rounded_df_2)

# 使用 round 方法将所有列四舍五入到 1 位小数
rounded_df_1 = df.round(1)
print("\n将所有列四舍五入到 1 位小数:")
print(rounded_df_1)

# 使用 round 方法将不同列四舍五入到不同的位数
rounded_df_diff = df.round({'A': 1, 'B': 3})
print("\n将列 A 四舍五入到 1 位小数,列 B 四舍五入到 3 位小数:")
print(rounded_df_diff)

# 创建一个 Series
series = pd.Series([1.12345, 2.54321, 3.98765, 4.56789])

print("\n原始 Series 数据:")
print(series)

# 使用 round 方法将 Series 四舍五入到 2 位小数
rounded_series = series.round(2)
print("\n将 Series 四舍五入到 2 位小数:")
print(rounded_series)

输出结果

原始数据集:
          A         B
0  1.12345  5.54321
1  2.12345  6.54321
2  3.12345  7.54321
3  4.12345  8.54321

将所有列四舍五入到 2 位小数:
      A     B
0  1.12  5.54
1  2.12  6.54
2  3.12  7.54
3  4.12  8.54

将所有列四舍五入到 1 位小数:
     A    B
0  1.1  5.5
1  2.1  6.5
2  3.1  7.5
3  4.1  8.5

将列 A 四舍五入到 1 位小数,列 B 四舍五入到 3 位小数:
     A      B
0  1.1  5.543
1  2.1  6.543
2  3.1  7.543
3  4.1  8.543

原始 Series 数据:
0    1.12345
1    2.54321
2    3.98765
3    4.56789
dtype: float64

将 Series 四舍五入到 2 位小数:
0    1.12
1    2.54
2    3.99
3    4.57
dtype: float64

总结

使用与应用场景
  • 数据处理:在数据清洗和预处理中,经常需要对浮点数进行舍入处理,以便符合业务需求或提高数据的可读性。
  • 格式化输出:在生成报告或展示数据时,可以使用 round() 方法对数值进行格式化,使输出更加整齐美观。
  • 精度控制:在进行科学计算或统计分析时,通过舍入可以控制数据的精度,避免过度精细导致的误差累积。

round() 方法在数据分析和处理过程中非常有用,可以方便地对 DataFrame 和 Series 中的数值进行舍入处理。通过指定舍入的位数,可以灵活地应用于各种数据处理场景。

rpow()的详细语法与实际案例

反向将一个 DataFrame 的值提升到另一个 DataFrame 的值。

rpow() 是 Pandas 库中的 DataFrame 和 Series 对象的方法,用于执行逐元素的指数运算,其中反向操作数在左边。换句话说,rpow() 是右指数运算,用于在元素级别上执行 other ** DataFrame/Series 运算。

语法
DataFrame.rpow(other, axis='columns', level=None, fill_value=None)

Series.rpow(other, level=None, fill_value=None, axis=0)
参数
  • other (scalar, sequence, Series, or DataFrame):用于执行指数运算的对象。
  • axis (int or str, default 'columns'):用于对齐的轴。对于 DataFrame,可以是 0 或 'index' 或 1 或 'columns'。
  • level (int or str, default None):如果轴是 MultiIndex,则沿指定级别进行广播。
  • fill_value (scalar, default None):在算术运算期间用于替换对齐的两个对象中的任何缺失值。
返回值

返回一个与输入对象形状相同的对象,包含指数运算的结果。

实例代码

import pandas as pd

# 创建一个 DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8]
}
df = pd.DataFrame(data)

print("原始数据集:")
print(df)

# 创建一个标量值
scalar = 2

# 使用 rpow 方法进行右指数运算
rpow_result_scalar = df.rpow(scalar)
print("\n将标量值 2 作为左操作数,对 DataFrame 的每个元素进行右指数运算的结果:")
print(rpow_result_scalar)

# 创建一个与 DataFrame 形状相同的对象
other_df = pd.DataFrame({
    'A': [2, 3, 4, 5],
    'B': [3, 4, 5, 6]
})

# 使用 rpow 方法进行右指数运算
rpow_result_df = df.rpow(other_df)
print("\n将另一个 DataFrame 作为左操作数,对原 DataFrame 的每个元素进行右指数运算的结果:")
print(rpow_result_df)

# 创建一个 Series
series = pd.Series([1, 2, 3, 4])

print("\n原始 Series 数据:")
print(series)

# 使用 rpow 方法进行右指数运算
rpow_result_series = series.rpow(scalar)
print("\n将标量值 2 作为左操作数,对 Series 的每个元素进行右指数运算的结果:")
print(rpow_result_series)

# 创建一个与 Series 形状相同的对象
other_series = pd.Series([2, 3, 4, 5])

# 使用 rpow 方法进行右指数运算
rpow_result_series_other = series.rpow(other_series)
print("\n将另一个 Series 作为左操作数,对原 Series 的每个元素进行右指数运算的结果:")
print(rpow_result_series_other)

输出结果

原始数据集:
   A  B
0  1  5
1  2  6
2  3  7
3  4  8

将标量值 2 作为左操作数,对 DataFrame 的每个元素进行右指数运算的结果:
     A       B
0    2      32
1    4      64
2    8     128
3   16     256

将另一个 DataFrame 作为左操作数,对原 DataFrame 的每个元素进行右指数运算的结果:
      A          B
0     2        243
1     9       4096
2    64     78125
3   625  1679616

原始 Series 数据:
0    1
1    2
2    3
3    4
dtype: int64

将标量值 2 作为左操作数,对 Series 的每个元素进行右指数运算的结果:
0     2
1     4
2     8
3    16
dtype: int64

将另一个 Series 作为左操作数,对原 Series 的每个元素进行右指数运算的结果:
0      2
1      9
2     64
3    625
dtype: int64

总结

使用与应用场景
  • 数学运算:对 DataFrame 或 Series 中的每个元素进行逐元素的指数运算,适用于各种数学和科学计算。
  • 数据转换:在数据处理中,使用指数运算可以实现数据的特定转换或标准化处理。
  • 缺失值处理:通过 fill_value 参数,可以在运算过程中处理缺失值,确保计算的顺利进行。

rpow() 方法在数据分析和处理过程中非常有用,可以方便地对数据集中的每个元素进行右指数运算。通过指定指数运算的对象和缺失值处理方式,可以灵活地应用于各种数据集。

rsub()的详细语法与实际案例

反向将一个 DataFrame 的值减去另一个 DataFrame 的值。

rsub() 是 Pandas 库中的 DataFrame 和 Series 对象的方法,用于执行逐元素的减法运算,其中反向操作数在左边。换句话说,rsub() 是右减法,用于在元素级别上执行 other - DataFrame/Series 运算。

语法
DataFrame.rsub(other, axis='columns', level=None, fill_value=None)
Series.rsub(other, level=None, fill_value=None, axis=0)
参数
  • other (scalar, sequence, Series, or DataFrame):用于执行减法运算的对象。
  • axis (int or str, default 'columns'):用于对齐的轴。对于 DataFrame,可以是 0 或 'index' 或 1 或 'columns'。
  • level (int or str, default None):如果轴是 MultiIndex,则沿指定级别进行广播。
  • fill_value (scalar, default None):在算术运算期间用于替换对齐的两个对象中的任何缺失值。
返回值

返回一个与输入对象形状相同的对象,包含减法运算的结果。

实例代码

import pandas as pd

# 创建一个 DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8]
}
df = pd.DataFrame(data)

print("原始数据集:")
print(df)

# 创建一个标量值
scalar = 10

# 使用 rsub 方法进行右减法运算
rsub_result_scalar = df.rsub(scalar)
print("\n将标量值 10 作为左操作数,对 DataFrame 的每个元素进行右减法运算的结果:")
print(rsub_result_scalar)

# 创建一个与 DataFrame 形状相同的对象
other_df = pd.DataFrame({
    'A': [10, 20, 30, 40],
    'B': [50, 60, 70, 80]
})

# 使用 rsub 方法进行右减法运算
rsub_result_df = df.rsub(other_df)
print("\n将另一个 DataFrame 作为左操作数,对原 DataFrame 的每个元素进行右减法运算的结果:")
print(rsub_result_df)

# 创建一个 Series
series = pd.Series([1, 2, 3, 4])

print("\n原始 Series 数据:")
print(series)

# 使用 rsub 方法进行右减法运算
rsub_result_series = series.rsub(scalar)
print("\n将标量值 10 作为左操作数,对 Series 的每个元素进行右减法运算的结果:")
print(rsub_result_series)

# 创建一个与 Series 形状相同的对象
other_series = pd.Series([10, 20, 30, 40])

# 使用 rsub 方法进行右减法运算
rsub_result_series_other = series.rsub(other_series)
print("\n将另一个 Series 作为左操作数,对原 Series 的每个元素进行右减法运算的结果:")
print(rsub_result_series_other)

输出结果

原始数据集:
   A  B
0  1  5
1  2  6
2  3  7
3  4  8

将标量值 10 作为左操作数,对 DataFrame 的每个元素进行右减法运算的结果:
    A  B
0   9  5
1   8  4
2   7  3
3   6  2

将另一个 DataFrame 作为左操作数,对原 DataFrame 的每个元素进行右减法运算的结果:
    A   B
0   9  45
1  18  54
2  27  63
3  36  72

原始 Series 数据:
0    1
1    2
2    3
3    4
dtype: int64

将标量值 10 作为左操作数,对 Series 的每个元素进行右减法运算的结果:
0    9
1    8
2    7
3    6
dtype: int64

将另一个 Series 作为左操作数,对原 Series 的每个元素进行右减法运算的结果:
0     9
1    18
2    27
3    36
dtype: int64

总结

使用与应用场景
  • 数学运算:对 DataFrame 或 Series 中的每个元素进行逐元素的减法运算,适用于各种数学和科学计算。
  • 数据转换:在数据处理中,使用减法运算可以实现数据的特定转换或标准化处理。
  • 缺失值处理:通过 fill_value 参数,可以在运算过程中处理缺失值,确保计算的顺利进行。

rsub() 方法在数据分析和处理过程中非常有用,可以方便地对数据集中的每个元素进行右减法运算。通过指定减法运算的对象和缺失值处理方式,可以灵活地应用于各种数据集。

rtruediv()的详细语法与实际案例

反向将一个 DataFrame 的值与另一个 DataFrame 的值相除。

rtruediv() 是 Pandas 库中的 DataFrame 和 Series 对象的方法,用于执行逐元素的除法运算,其中反向操作数在左边。换句话说,rtruediv() 是右除法,用于在元素级别上执行 other / DataFrame/Series 运算。

语法
DataFrame.rtruediv(other, axis='columns', level=None, fill_value=None)
Series.rtruediv(other, level=None, fill_value=None, axis=0)
参数
  • other (scalar, sequence, Series, or DataFrame):用于执行除法运算的对象。
  • axis (int or str, default 'columns'):用于对齐的轴。对于 DataFrame,可以是 0 或 'index' 或 1 或 'columns'。
  • level (int or str, default None):如果轴是 MultiIndex,则沿指定级别进行广播。
  • fill_value (scalar, default None):在算术运算期间用于替换对齐的两个对象中的任何缺失值。
返回值

返回一个与输入对象形状相同的对象,包含除法运算的结果。

实例代码

import pandas as pd

# 创建一个 DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8]
}
df = pd.DataFrame(data)

print("原始数据集:")
print(df)

# 创建一个标量值
scalar = 20

# 使用 rtruediv 方法进行右除法运算
rtruediv_result_scalar = df.rtruediv(scalar)
print("\n将标量值 20 作为左操作数,对 DataFrame 的每个元素进行右除法运算的结果:")
print(rtruediv_result_scalar)

# 创建一个与 DataFrame 形状相同的对象
other_df = pd.DataFrame({
    'A': [10, 20, 30, 40],
    'B': [50, 60, 70, 80]
})

# 使用 rtruediv 方法进行右除法运算
rtruediv_result_df = df.rtruediv(other_df)
print("\n将另一个 DataFrame 作为左操作数,对原 DataFrame 的每个元素进行右除法运算的结果:")
print(rtruediv_result_df)

# 创建一个 Series
series = pd.Series([1, 2, 3, 4])

print("\n原始 Series 数据:")
print(series)

# 使用 rtruediv 方法进行右除法运算
rtruediv_result_series = series.rtruediv(scalar)
print("\n将标量值 20 作为左操作数,对 Series 的每个元素进行右除法运算的结果:")
print(rtruediv_result_series)

# 创建一个与 Series 形状相同的对象
other_series = pd.Series([10, 20, 30, 40])

# 使用 rtruediv 方法进行右除法运算
rtruediv_result_series_other = series.rtruediv(other_series)
print("\n将另一个 Series 作为左操作数,对原 Series 的每个元素进行右除法运算的结果:")
print(rtruediv_result_series_other)

输出结果

原始数据集:
   A  B
0  1  5
1  2  6
2  3  7
3  4  8

将标量值 20 作为左操作数,对 DataFrame 的每个元素进行右除法运算的结果:
      A         B
0  20.0  4.000000
1  10.0  3.333333
2   6.666667  2.857143
3   5.0  2.5

将另一个 DataFrame 作为左操作数,对原 DataFrame 的每个元素进行右除法运算的结果:
          A         B
0  10.000000  10.000000
1  10.000000  10.000000
2  10.000000  10.000000
3  10.000000  10.000000

原始 Series 数据:
0    1
1    2
2    3
3    4
dtype: int64

将标量值 20 作为左操作数,对 Series 的每个元素进行右除法运算的结果:
0    20.000000
1    10.000000
2     6.666667
3     5.000000
dtype: float64

将另一个 Series 作为左操作数,对原 Series 的每个元素进行右除法运算的结果:
0    10.000000
1    10.000000
2    10.000000
3    10.000000
dtype: float64

总结

使用与应用场景
  • 数学运算:对 DataFrame 或 Series 中的每个元素进行逐元素的除法运算,适用于各种数学和科学计算。
  • 数据转换:在数据处理中,使用除法运算可以实现数据的特定转换或标准化处理。
  • 缺失值处理:通过 fill_value 参数,可以在运算过程中处理缺失值,确保计算的顺利进行。

rtruediv() 方法在数据分析和处理过程中非常有用,可以方便地对数据集中的每个元素进行右除法运算。通过指定除法运算的对象和缺失值处理方式,可以灵活地应用于各种数据集。

sample()的详细语法与实际案例

返回一个随机选择元素。

sample() 是 Pandas 库中的 DataFrame 和 Series 对象的方法,用于从数据集中随机抽样。它可以用于获取数据集的随机子集。

语法
DataFrame.sample(n=None, frac=None, replace=False, weights=None, 
                    random_state=None, axis=None, ignore_index=False)
Series.sample(n=None, frac=None, replace=False, weights=None, 
                    random_state=None,axis=None, ignore_index=False)
参数
  • n (int, optional):要返回的样本数量。不能与 frac 同时使用。
  • frac (float, optional):返回样本的比例。不能与 n 同时使用。
  • replace (bool, default False):是否允许重复抽样。
  • weights (str or ndarray-like, optional):用于加权随机抽样的权重。
  • random_state (int, array-like, BitGenerator, np.random.RandomState, np.random.Generator, optional):用于随机数生成的种子。
  • axis (int or str, default None):用于选择样本的轴。0 或 'index' 表示行,1 或 'columns' 表示列。
  • ignore_index (bool, default False):是否忽略原始索引。如果为 True,返回的对象将具有新的整数索引。
返回值

返回一个包含随机抽样数据的新的 DataFrame 或 Series。

实例代码

import pandas as pd
import numpy as np

# 创建一个 DataFrame
data = {
    'A': range(1, 11),
    'B': np.random.rand(10),
    'C': np.random.choice(['X', 'Y', 'Z'], 10)
}
df = pd.DataFrame(data)

print("原始数据集:")
print(df)

# 使用 sample 方法随机抽取 3 行数据
sampled_df_3 = df.sample(n=3)
print("\n随机抽取 3 行数据:")
print(sampled_df_3)

# 使用 sample 方法按比例随机抽取 50% 的数据
sampled_df_frac = df.sample(frac=0.5)
print("\n按比例随机抽取 50% 的数据:")
print(sampled_df_frac)

# 使用 sample 方法随机抽取 3 行数据,并设置 random_state 以获得可重复结果
sampled_df_random_state = df.sample(n=3, random_state=42)
print("\n随机抽取 3 行数据,并设置 random_state 以获得可重复结果:")
print(sampled_df_random_state)

# 使用 sample 方法随机抽取 3 行数据,并允许重复抽样
sampled_df_replace = df.sample(n=3, replace=True)
print("\n随机抽取 3 行数据,并允许重复抽样:")
print(sampled_df_replace)

# 创建一个 Series
series = pd.Series(range(1, 11))

print("\n原始 Series 数据:")
print(series)

# 使用 sample 方法随机抽取 3 个元素
sampled_series = series.sample(n=3)
print("\n随机抽取 3 个元素:")
print(sampled_series)

输出结果

原始数据集:
    A         B  C
0   1  0.761594  Y
1   2  0.726596  X
2   3  0.785176  Y
3   4  0.199674  Z
4   5  0.514234  X
5   6  0.592415  Z
6   7  0.046450  X
7   8  0.607545  Z
8   9  0.170524  Y
9  10  0.065052  X

随机抽取 3 行数据:
    A         B  C
6   7  0.046450  X
2   3  0.785176  Y
4   5  0.514234  X

按比例随机抽取 50% 的数据:
    A         B  C
6   7  0.046450  X
2   3  0.785176  Y
4   5  0.514234  X
9  10  0.065052  X
0   1  0.761594  Y

随机抽取 3 行数据,并设置 random_state 以获得可重复结果:
    A         B  C
8   9  0.170524  Y
1   2  0.726596  X
5   6  0.592415  Z

随机抽取 3 行数据,并允许重复抽样:
    A         B  C
4   5  0.514234  X
4   5  0.514234  X
2   3  0.785176  Y

原始 Series 数据:
0     1
1     2
2     3
3     4
4     5
5     6
6     7
7     8
8     9
9    10
dtype: int64

随机抽取 3 个元素:
5    6
3    4
8    9
dtype: int64

总结

使用与应用场景
  • 数据抽样:在进行数据分析和建模时,可以使用 sample() 方法从数据集中随机抽样,获得数据的随机子集。
  • 比例抽样:通过指定 frac 参数,可以按比例抽样,适用于需要抽取一定比例的数据场景。
  • 重复抽样:通过设置 replace=True,可以进行重复抽样,适用于需要进行数据扩充的场景。
  • 可重复性:通过设置 random_state 参数,可以保证抽样结果的可重复性,便于调试和验证。

sample() 方法在数据分析和处理过程中非常有用,可以方便地从 DataFrame 和 Series 中随机抽取数据。通过指定抽样的数量或比例,以及其他参数设置,可以灵活地应用于各种数据处理场景。

sem()的详细语法与实际案例

返回指定轴上平均值的标准误差。

sem() 是 Pandas 库中的 DataFrame 和 Series 对象的方法,用于计算样本均值的标准误差(Standard Error of the Mean, SEM)。该方法按列或按行计算样本均值的标准误差。

语法
DataFrame.sem(axis=None, skipna=True, level=None, 
                        ddof=1, numeric_only=None)
Series.sem(axis=0, skipna=True, level=None, ddof=1, numeric_only=None)
参数
  • axis (int or str, default None):指定沿哪个轴计算标准误差。0 或 'index' 表示按列计算,1 或 'columns' 表示按行计算。
  • skipna (bool, default True):是否跳过缺失值 (NaN)。
  • level (int or level name, default None):如果轴是 MultiIndex,则按指定级别进行计算。
  • ddof (int, default 1):分母中自由度的调整量。默认值为 1。
  • numeric_only (bool, default None):如果为 True,则只包括数字数据类型。如果为 None,将尝试包括所有数据类型。
返回值

返回一个包含样本均值标准误差的 Series 或 DataFrame。

实例代码

import pandas as pd
import numpy as np

# 创建一个 DataFrame
data = {
    'A': [1, 2, 3, 4, 5],
    'B': [5, 6, 7, 8, 9],
    'C': [10, np.nan, 30, 40, 50]
}
df = pd.DataFrame(data)

print("原始数据集:")
print(df)

# 使用 sem 方法计算每列的样本均值标准误差
sem_per_column = df.sem()
print("\n每列的样本均值标准误差:")
print(sem_per_column)

# 使用 sem 方法计算每行的样本均值标准误差
sem_per_row = df.sem(axis=1)
print("\n每行的样本均值标准误差:")
print(sem_per_row)

# 创建一个 Series
series = pd.Series([1, 2, 3, 4, 5])

print("\n原始 Series 数据:")
print(series)

# 使用 sem 方法计算 Series 的样本均值标准误差
sem_series = series.sem()
print("\nSeries 的样本均值标准误差:")
print(sem_series)

输出结果

原始数据集:
   A  B     C
0  1  5  10.0
1  2  6   NaN
2  3  7  30.0
3  4  8  40.0
4  5  9  50.0

每列的样本均值标准误差:
A    0.707107
B    0.707107
C    9.574271
dtype: float64

每行的样本均值标准误差:
0    2.516611
1    2.000000
2    8.819171
3    8.819171
4    8.819171
dtype: float64

原始 Series 数据:
0    1
1    2
2    3
3    4
4    5
dtype: int64

Series 的样本均值标准误差:
0.7071067811865476

总结

使用与应用场景
  • 样本均值标准误差计算:通过 sem() 方法,可以计算 DataFrame 或 Series 中每列或每行的样本均值标准误差,适用于统计分析和数据科学中的置信区间估计。
  • 缺失值处理:通过设置 skipna=True,可以在计算过程中忽略缺失值,确保计算的准确性。
  • 多级索引计算:在处理多级索引数据时,可以通过 level 参数按指定级别进行计算。

sem() 方法在数据分析和统计处理中非常有用,可以方便地计算 DataFrame 和 Series 中的样本均值标准误差。通过指定轴、自由度调整量和缺失值处理方式,可以灵活地应用于各种数据集。

select_dtypes()的详细语法与实际案例

返回包含选定数据类型列的 DataFrame。

select_dtypes() 是 Pandas 库中的 DataFrame 对象的方法,用于根据数据类型选择列。该方法允许用户基于数据类型筛选出特定的列,便于后续操作。

语法
DataFrame.select_dtypes(include=None, exclude=None)
参数
  • include (scalar or list-like):要包含的数据类型。如果为 None,则不包含任何数据类型。
  • exclude (scalar or list-like):要排除的数据类型。如果为 None,则不排除任何数据类型。

数据类型可以是以下几种格式之一:

  • numpy.dtype 类型,例如 np.int64
  • Python 类型,例如 int
  • Pandas 类型,例如 pd.StringDtype
  • 字符串类型表示,例如 'int64''float64'
返回值

返回一个新的 DataFrame,其中只包含所选择的数据类型的列。

实例代码

import pandas as pd
import numpy as np

# 创建一个 DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [1.1, 2.2, 3.3, 4.4],
    'C': ['a', 'b', 'c', 'd'],
    'D': pd.to_datetime(['2021-01-01', '2021-01-02', '2021-01-03', '2021-01-04']),
    'E': [True, False, True, False]
}
df = pd.DataFrame(data)

print("原始数据集:")
print(df)

# 使用 select_dtypes 方法选择所有数值类型的列
numeric_df = df.select_dtypes(include=[np.number])
print("\n选择所有数值类型的列:")
print(numeric_df)

# 使用 select_dtypes 方法选择所有字符串类型的列
string_df = df.select_dtypes(include=[object])
print("\n选择所有字符串类型的列:")
print(string_df)

# 使用 select_dtypes 方法选择所有布尔类型的列
bool_df = df.select_dtypes(include=[bool])
print("\n选择所有布尔类型的列:")
print(bool_df)

# 使用 select_dtypes 方法排除所有数值类型的列
exclude_numeric_df = df.select_dtypes(exclude=[np.number])
print("\n排除所有数值类型的列:")
print(exclude_numeric_df)

输出结果

原始数据集:
   A    B  C          D      E
0  1  1.1  a 2021-01-01   True
1  2  2.2  b 2021-01-02  False
2  3  3.3  c 2021-01-03   True
3  4  4.4  d 2021-01-04  False

选择所有数值类型的列:
   A    B
0  1  1.1
1  2  2.2
2  3  3.3
3  4  4.4

选择所有字符串类型的列:
   C
0  a
1  b
2  c
3  d

选择所有布尔类型的列:
       E
0   True
1  False
2   True
3  False

排除所有数值类型的列:
   C          D      E
0  a 2021-01-01   True
1  b 2021-01-02  False
2  c 2021-01-03   True
3  d 2021-01-04  False

总结

使用与应用场景
  • 列筛选:通过 select_dtypes() 方法,可以根据数据类型选择 DataFrame 中的特定列,适用于数据清洗和预处理。
  • 数据类型转换:在数据分析和处理过程中,可以使用该方法筛选出特定数据类型的列,便于进行相应的数据类型转换操作。
  • 排除特定数据类型:通过 exclude 参数,可以排除特定数据类型的列,便于集中处理剩余数据。

select_dtypes() 方法在数据分析和处理过程中非常有用,可以方便地根据数据类型选择 DataFrame 中的列。通过指定包含或排除的数据类型,可以灵活地应用于各种数据处理场景。

shape的详细语法与实际案例

返回 DataFrame 的行数和列数。

shape 是 Pandas DataFrame 和 Series 对象的一个属性,用于获取数据的维度信息。它返回一个包含行数和列数的元组,对于 DataFrame 是 (行数, 列数),对于 Series 是 (行数, )

语法
DataFrame.shape
Series.shape
返回值

返回一个包含行数和列数的元组。

实例代码

import pandas as pd
import numpy as np

# 创建一个 DataFrame
data = {
    'A': [1, 2, 3, 4, 5],
    'B': [5, 6, 7, 8, 9],
    'C': ['a', 'b', 'c', 'd', 'e']
}
df = pd.DataFrame(data)

print("原始数据集:")
print(df)

# 获取 DataFrame 的形状
df_shape = df.shape
print("\nDataFrame 的形状:")
print(df_shape)

# 创建一个 Series
series = pd.Series([1, 2, 3, 4, 5])

print("\n原始 Series 数据:")
print(series)

# 获取 Series 的形状
series_shape = series.shape
print("\nSeries 的形状:")
print(series_shape)

输出结果

原始数据集:
   A  B  C
0  1  5  a
1  2  6  b
2  3  7  c
3  4  8  d
4  5  9  e

DataFrame 的形状:
(5, 3)

原始 Series 数据:
0    1
1    2
2    3
3    4
4    5
dtype: int64

Series 的形状:
(5,)

总结

使用与应用场景
  • 数据检查:在数据分析的初始阶段,检查数据的维度信息是非常重要的。shape 属性可以快速提供数据集的行数和列数。
  • 数据验证:在数据处理和转换过程中,可以使用 shape 属性验证操作是否按预期进行了更改。
  • 条件判断:在编写数据处理脚本时,可以根据数据的形状进行条件判断,从而实现更灵活的逻辑控制。

shape 属性是 Pandas 中非常有用的一个功能,可以方便地获取 DataFrame 和 Series 的维度信息,帮助用户在数据分析和处理过程中快速了解数据结构。

set_axis()的详细语法与实际案例

设置指定轴的索引。

set_axis() 是 Pandas 库中的 DataFrame 和 Series 对象的方法,用于设置指定轴的标签。该方法可以用于行或列的标签重命名。

语法
DataFrame.set_axis(labels, axis=0, inplace=False)
Series.set_axis(labels, axis=0, inplace=False)
参数
  • labels (list-like):用于设置的新标签。
  • axis (int or str):要设置标签的轴。0 或 'index' 表示行,1 或 'columns' 表示列。
  • inplace (bool, default False):是否在原地修改对象。如果为 True,则对原对象进行修改,并返回 None。
返回值

返回一个设置了新标签的 DataFrame 或 Series。如果 inplace=True,则返回 None。

实例代码

import pandas as pd

# 创建一个 DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8]
}
df = pd.DataFrame(data, index=['a', 'b', 'c', 'd'])

print("原始数据集:")
print(df)

# 使用 set_axis 方法重命名行标签
new_row_labels = ['row1', 'row2', 'row3', 'row4']
df_with_new_row_labels = df.set_axis(new_row_labels, axis=0)
print("\n重命名行标签后的 DataFrame:")
print(df_with_new_row_labels)

# 使用 set_axis 方法重命名列标签
new_column_labels = ['X', 'Y']
df_with_new_column_labels = df.set_axis(new_column_labels, axis=1)
print("\n重命名列标签后的 DataFrame:")
print(df_with_new_column_labels)

# 使用 set_axis 方法重命名列标签并在原地修改
df.set_axis(new_column_labels, axis=1, inplace=True)
print("\n重命名列标签并在原地修改后的 DataFrame:")
print(df)

# 创建一个 Series
series = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])

print("\n原始 Series 数据:")
print(series)

# 使用 set_axis 方法重命名 Series 的索引
new_series_labels = ['A', 'B', 'C', 'D']
series_with_new_labels = series.set_axis(new_series_labels)
print("\n重命名索引后的 Series:")
print(series_with_new_labels)

输出结果

原始数据集:
   A  B
a  1  5
b  2  6
c  3  7
d  4  8

重命名行标签后的 DataFrame:
      A  B
row1  1  5
row2  2  6
row3  3  7
row4  4  8

重命名列标签后的 DataFrame:
   X  Y
a  1  5
b  2  6
c  3  7
d  4  8

重命名列标签并在原地修改后的 DataFrame:
   X  Y
a  1  5
b  2  6
c  3  7
d  4  8

原始 Series 数据:
a    1
b    2
c    3
d    4
dtype: int64

重命名索引后的 Series:
A    1
B    2
C    3
D    4
dtype: int64

总结

使用与应用场景
  • 标签重命名:通过 set_axis() 方法,可以轻松地重命名 DataFrame 或 Series 的行或列标签,适用于数据清洗和预处理。
  • 灵活操作:可以指定轴和是否在原地修改,灵活地应用于各种场景。
  • 数据对齐:在进行数据合并和对齐操作之前,可以使用该方法确保标签的一致性。

set_axis() 方法在数据分析和处理过程中非常有用,可以方便地设置 DataFrame 和 Series 的指定轴的标签。通过灵活的参数设置,可以应用于各种数据处理场景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值