在浣熊市狭窄的下水道中,伴随着枪响,那颗本应射中艾达的子弹被浣熊市新晋警察里昂挡了下来。艾达无法理解里昂为什么会为她挡下这发子弹,但她还是将里昂拖到了安全的地方并用绷带治疗了里昂。由于任务在身,艾达不得已丢下了昏迷的里昂,继续去追击G病毒的创造者。当里昂逐渐恢复意识,他发现自己已经是弹尽粮绝,尽管下水道中拥有大量的感染者,但他还是想追上艾达。已知浣熊市下水道的平面图可以简化为一个nn行mm列的矩阵(3≤n,m≤500)(3≤n,m≤500),其中有PP个僵尸(0≤P≤50)(0≤P≤50),所有的这些僵尸会在一个1∗k(2≤k≤10)1∗k(2≤k≤10)的矩形中来回游走,撕咬所有它们碰到的猎物。好在这些僵尸并不会主动去出击,而只攻击自己闯上门来的倒霉蛋。里昂每次移动都会花费一个单位的时间,而且里昂也不能穿过墙壁、边界或者遇上僵尸,里昂甚至不能够停下,因为一旦停下休息他就没法再站起来。里昂太想赶快追上艾达,请你帮帮他最短需要多长时间才能追上艾达?
Input
第一行输入4个整数n,m,p,k(3≤n,m≤500,0≤P≤50,2≤k≤10)n,m,p,k(3≤n,m≤500,0≤P≤50,2≤k≤10),分别表示矩阵的行、列,僵尸的数量,僵尸来回走动的长度。
第2行到第n+1n+1行输入一个矩阵,每行输入一个字符串,第ii个字符串的第jj个字符表示矩阵中第ii行jj列的状态,如果字符是"#"表示是可以走的路,如果是"&"表示是下水道的墙壁。
第n+2行到第n+p+1n+p+1行每行输入两个整数x,yx,y和一个字符串,第ii行的数据表示第ii个僵尸当前时间会从第xx行yy列出发,沿着固有的方向前进K个单位时间后折返,再走回它之前的位置,再折返,依照这种方法循环下去。第三个字符串表示僵尸行进的方向,"UP"表示向上走,"LEFT"表示向左走,"DOWN"表示向下走,"RIGHT"表示向右走。数据保证在k个长度内僵尸不会碰到边界或者墙壁或者两个僵尸路径交错。
Output
如果里昂能够追上艾达,输出一行整数,表示里昂最短追上艾达的时间。
如果里昂不能追上艾达,输出一行"You are Dead!"(不包含引号)
Examples
Input
3 3 1 3
&&A
###
&&L
2 1 RIGHT
Output
2
Input
4 4 1 2
L#&A
##&#
#&##
####
3 3 DOWN
Output
You are Dead!
Note
样例一说明:
如果用*代表僵尸的位置,则起始时状态为
&&A
*##
&&L
一个单位时间后,里昂向上走,僵尸向右走,两者并没有碰上
&&A
#*L
&&#
再一个单位时间后,里昂向上走,追上艾达,达成目的。
&&L
##*
&&#
样例二说明:
初始状态
L#&A
##&#
#&*#
####
一单位时间后
##&A
L#&#
#&##
##*#
二单位时间后
##&A
##&#
L&*#
####
三单位时间后
##&A
##&#
#&##
L#*#
四单位时间后
##&A
##&#
#&*#
#L##
里昂如果再向左走的话就会跟僵尸碰个正着,而且不论里昂怎么往回走,在(4,3)总能遇见僵尸,所以里昂挂了。
此题为简单搜索(bfs)
//Full of love and hope for life
#include <iostream>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <stdio.h>
#include <queue>
using namespace std;
struct node
{
int x,y,t;//分别记录行,列,和步数
};
node n,m;
int a,b,c,d;
int flag[510][510][25],nm[510][510][25];
int nex[4][2]= {{1,0},{-1,0},{0,-1},{0,1}};
char s[510][510],ss[110];
int g,h,k;
void bfs(int x,int y)
{
queue<node>q;
n.x=x;
n.y=y;
n.t=0;
flag[n.x][n.y][n.t]=1;
q.push(n);
while(!q.empty())
{
m=q.front();
q.pop();
if(s[m.x][m.y]=='A')
{
cout << m.t;
return ;
}
for(int i=0; i<4; i++)
{
n.x=m.x+nex[i][0];
n.y=m.y+nex[i][1];
n.t=m.t+1;
if(n.x<0||n.x>=a||n.y<0||n.y>=b||s[n.x][n.y]=='&')//不能越界,不能走墙
{
continue;
}
if(nm[n.x][n.y][n.t%(d*2)])//正好僵尸在这个点
{
continue;
}
if(flag[n.x][n.y][n.t%(d*2)])//没有走过
{
continue;
}
flag[n.x][n.y][n.t%(d*2)]=1;
q.push(n);
}
}
cout << "You are Dead!";
return ;
}
int main()
{
int x,y;
cin >> a >> b >> c >> d;
memset(flag,0,sizeof(flag));
d--;
for(int i=0; i<a; i++)
{
cin >> s[i];
for(int j=0; j<b; j++)
{
if(s[i][j]=='L')
{
x=i;
y=j;
}
}
}
for(int i=1; i<=c; i++)
{
cin >> g >> h >> ss;
g--;
h--;
if(strcmp(ss,"DOWN")==0)
{
k=0;
}
if(strcmp(ss,"UP")==0)
{
k=1;
}
if(strcmp(ss,"LEFT")==0)
{
k=2;
}
if(strcmp(ss,"RIGHT")==0)
{
k=3;
}
for(int j=0; j<d; j++)//记录僵尸在一个来回中每个单位在什么位置
{
nm[g+nex[k][0]*j][h+nex[k][1]*j][j]=i;
}
for(int j=d; j<d*2; j++)//记录僵尸在一个来回中每个单位在什么位置
{
nm[g+nex[k][0]*(d*2-j)][h+nex[k][1]*(d*2-j)][j]=i;
}
}
bfs(x,y);
return 0;
}